函数在处可微且等于,则 x是否可积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:24:00
lim(x->0)(f(x)+3)/x=2∴x->0时,(f(x)+3)=O(x)即:lim(x->0)(f(x)+3)=0,又函数f(x)在x=0点连续:∴lim(x->0)f(x)=-3=f(0)
是减函数.最后化简为(x1x2-1)(x1-x2)/x1x2因为1
f(x)0从而e^x(f'(x)-f(x))/e^(2x)>0从而(f(x)/e^x)'>0从而x=2时函数的值大于x=0时函数的值,即f(2)/e^2>f(0)所以f(2)>e^2*f(0).
y=|sinx|那么x>0时,y=sinx求导得到y'=cosx而x
不可导.因为当x为0时f'(x)有=-(1/√0),既f'(x)(x->0)无定义,因此,函数f(x)=4-x^(2/3)在(-1,0)上不可导
|f(x)|=|f(x)-f(a)|=|f'(c)(x-a)|
函数在x=2处的值为4,根据连续的定义,当x左趋于2时,有2a+b=4.根据导数的定义:当x右趋向2时f'(x)=(x*x-2)/(x-2)=x+2=4当x左趋向2时f'(x)=(ax-b-2)/(x
不可导.按照定义来就可以了.当h趋于0时,lim[f(h)-f(0)]/h=limh^(1/3)/h=limh^(-2/3)是趋于无穷的,即极限不存在,于是f(x)=x^(1/3)+1在x=0不可导.
在x=1处连续且可导则x=1时,x^2=ax+b2边导数也一样,x=1时.2x=a所以:a+b=1a=2得a=2,b=-1
这个题有点学问的.应该是可导的.证明:(1)首先f(x)在点X=0处连续,连续是可导的必要条件,因此我们可以继续往下讨论.(2)题目告诉我们lim{x-->0}f(x)/x存在.但是没有告诉我们f(0
一点的极限本就包括了左右两个方向,所以要判断连续必须要两个方向的极限都等于该点导数值再问:可导不是只要用定义就好吗再答:连续和可导都是用定义证明再答:可导要在该点连续,两个方向导数存在且相等,再问:如
可导必然连续,连续不一定可导判断连续:设点x0,若x趋于x0时,limf(x)=f(x0),则f(x)在x0连续判断可导:需证左导=右导,由定义lim(f(x)-f(x0))/(x-x0),其中x趋于
因为lim(f(x)/x)存在所以当(x->0)时limf(x)=0(同阶无穷小)又因为f(x)在x=0处连续所以f(0)=0(函数连续的定义)所以:f'(0)=lim[f(x)-f(0)]/(x-0
我没直接算出来……选D把A项f(1)=1代进去得f(2)=1=f(1)与f(x)是增函数不符所以A不对变形原等式、f[f(x)+1/x]=1/f(x)令x=1f[f(1)+1]=1/f(1)若f(1)
函数和导函数是两个概念,不要混淆不清.我们都是研究函数的连续性,而不导函数的连续性.函数的连续性用一阶导数研究;而导函数的连续性要用二阶导数去研究.有句口语:可导必连续,但连续不一定可导.限100字
既然你知道类Cantor集,其实不难构造这个反例.设E是包含于[0,1]并具有正测度的类Cantor集,取f(x)为E的特征函数.显然f(x)有界,可测,Lebesgue可积.由E没有内点,易见E中的
http://baike.baidu.com/link?url=aaw6msJKZ4dkGw072b4vWespkfzWCtHstS1TNQZvqCAbe4GdkpJ90F2fCR_ZcMtNQzy3
方法1.这是一个比较常用的函数类型y=x+a/x(a>0)X在(0,根号a)单调递减,在(根号a,+无穷大)单调递增,所以在x大于等于1上是增函数方法2.求导f'(x)=1-1/x^2=(x^2-1)