函数在该点有极限,在该点的去心领域一定连续
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:58:26
一元函数在某点的极限存在,则该函数不一定在该点连续;若函数在某点连续,则一定在该点存在极限;所以是必要非充分条件.
当然不对啦.比如:g(x)=x^2+1,g'(x)=2x,g'(0)=0=af(x)=x+1,f'(x)=1,f'(0)=1=ba/b=0g(0)/f(0)=1/1=1
若函数y=f(x)在点X0处有极限,则它在该点的某邻域内(除该点)有定义,这个由极限的定义可以得到但有定义不一定有极限,最简单的例子就是Dirichlet函数所以是充分条件
如果在某点的极限存在,说明在这个点的去心邻域内存在,至于这个点,不一定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,再问:导函数在某点的极限存在则一定在该点的某个去心邻域内存在对吧
答案不一定,反例见参考资料
你的理解是错误的请及时点击右下角的【采纳为满意回答】按钮你有问题也可以在这里向我提问:再问:老师,那就是左右导数跟导数的左右极限没有什么必然联系了吧再答:肯定有关系的,把条件改一改:函数在x0连续,导
函数在一点附近有界但是函数可能是振动的因此不能推出有极限但函数有极限根据极限的有界性能推出在该点附近函数有界
函数在该点有界,不一定有极限,但是在该点有极限,一定在该点附近有界.
正确!函数只能取定义域对应的值域,定义域外的函数值都是取不到的
函数可导定义:(1)若f(x)在x0处连续,则当a趋向于0时,[f(x0+a)-f(x0)]/a存在极限,则称f(x)在x0处可导.(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)
这个问题在于这个函数在这一点连续是否,一个连续函数在其连续区间内任何一点的极限都是与其函数值相等的;对于一个函数在这一点不连续时,这一点作为间断点,可以不等于函数在这一点的函数值,也就是说,函数在这一
解法一:(直接展开法)原式=lim(x->0){[(1+x)(1+5x+6x²)-1]/x}=lim(x->0)[(1+6x+11x²+6x³-1)/x]=lim(x->
思路:利用极限定义,以及和差化积x->x0时,cosx-cosx0=-2sin[(x+x0)/2]sin[(x-x0)]/2->0其中:x->x0,[(x+x0)/2->x0,sin[(x+x0)/2
这就是连续的定义啊比如f(x)=xlin(x→0)x=0而f(0)=0所以f(x)在x=0连续再问:某点与该点是指的一个点吗?再答:是采纳吧再问:呵呵这么急?f(x)=x的导数是x=0?再答:f'(x
左极限存在,右极限存在,但不相等.在图形上上下断开的曲线,或者直线.平时我们讲它不存在,是指我们无法概括,无法“一言以蔽之”,事实上,我们并不否认左极限、右极限都是存在的.
连续就是能连上.数学上就是某个函数,一直趋近某个点的时候,最后会等于它在这个点的值.可以反面说明:比如函数分2段,一段在[1,2)上等于1,一段在[2,3]上等于2那么f(2)=2,但是limf(x)
不存在,函数极限存在的充要条件是在该点左右极限均存在且相等.
一元可微函数一点的导数表示该点割线斜率的极限,通常理解为切线的斜率就可以.连续函数在某点的极限为该点的函数值,对一般函数不成立.