分区间讨论法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:13:10
分区间讨论法
函数区间讨论

解题思路:(1)欲求求f(x)的解析式,先利用f(x)的解析式求得f(x+1)的解析式,结合f(x+1)为偶函数列出等式,再根据函数f(x)的图象与直线y=x相切,将直线的方程代入二次函数的解析式,利

确定函数y=ln(x^2+1)的单调区间和凹凸区间.(列表讨论)

定义域为R,y为偶函数y'=2x/(1+x^2)=0,得极值点:x=0y"=2(1-x^2)/(1+x^2)^2=0,得拐点:x=-1,1单调减区间(-∞,0)单调减区间(0,+∞)凹区间:(-1,1

讨论函数y=sinx 在区间(0,2π)的单调性

这个其实你画图就可以知道了不过要用导数也简单啊y'=cosxx属于(0,)或者(3π/2,2π),y'>0,函数单调递增x属于[π/2,3π/2],y'

关于带有绝对值的定积分的运算 需要分情况讨论,我不知道怎么划分a的区间来讨论计算,

再问:我想知道的是怎么才能想到a的范围必须这样划分啊?前两种情况我理解了,第三种情况不理解。我们的目的是去掉绝对值号是吧?再问:可不可以这样理解啊,根据积分上下限,分为a在积分区间左边,里边,外边,这

讨论函数y=(1/x)+x的单调区间和奇偶性

f(x)=(1/x)+x,f(-x)=-((1/x)+x)=-f(x)所以是奇函数,根据函数定义可知x不等于0,是对号函数,两个顶点是(-1,-1)和(1,1)

一氧化氮,氧气,和水的反应,分情况讨论.

因为NO2为先与水反应方程式为3NO2+H2O==2HNO3+NO而NO与O2自发反映产生NO2:2NO+O2==2NO2;(1):当NO2与O2物质的量之比大于4:1时,由于NO2过量,所以反应分两

含有绝对值的方程怎样解?怎样分情况讨论?

含绝对值的话,你要看绝对值里面的项比如:l2-xl,如果x>2,那么化简可以得到x-2,如果x<2,那么化简可以得到2-x,如果x=2,那么化简等于0

讨论函数的连续性什么时候分左右极限

通常是在分段函数的情况下分左右极限,只有x0的左极限=x0的有极限=x0点处的函数值,才能认为函数在该点连续.

f(x)=ln(2x+3)+x^2,讨论其单调区间.

因为2x+3>0,所以x>-3/2,f的定义域为(-3/2,正无穷)求导得f'=1/(2x+3)+2x=(4x^2+6x+1)/(2x+3)解不等式f'>0,得x>(-6+根号5)/4或x-3/2,所

matlab数据分区间,统计分布

这不是hist吗.再问:请问不用写代码吗?如果是做成曲线呢?再答:你先自己看一下hist函数的帮助文档,大概有数了以后重新明确自己的要求,你现在的要求太模糊没法写代码。再问:嗯我知道hist函数,想问

导数里讨论函数f(x)单调区间该怎样做?急.在%E

f’(x)>0或<0,解一下若解不了,讨论参量的范围,比如logaX常常讨论a>1和0<a<1

为什么要分类讨论?怎么分?没懂

条件BC≥a,BA≥4BC+BA=16设BC=x,则x≥a∴x+BA=16∴BA=16-x≥4那么x≤12∴a≤x≤12S=x(16-x)=-(x-8)²+64对称轴为x=8需讨论对称轴与定

什么叫“零点区间讨论法”?

零点区间讨论法例6.求函数的最大值.分析:本题先用“零点区间讨论法”消去函数y中绝对值符号,然后求出y在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值.易知该函数有两个零点、当时当时当

用零点区间讨论法化简x+1|+|x-2|-|x-3|求详细解题步骤

所谓零点,就是x=-1,x=2,x=3这几个点,这三点把数轴分成四部分,也就是四个区间:①当x

导数求最值题(分情况讨论

∵ln(x-1)x-1>0,x>111f'(x)=1/(x-1)-a=(a+1-ax)/(x-1)f"(x)=-1/(x-1)²

在求函数y=x+1/x的单调区间时,需要分x>0,x<0来讨论

看题是要的是什么.首先y=x+1/x是x≠0,然后这个就要分情况了一个是x>0另一个就是x

讨论函数y=|x²-2x |+1的单调区间,并画出图像

函数在(负无穷,0),(1,2)上递减,在[0,1],[2,正无穷)上递增图像自己看

讨论函数的连续性和可导性时,为什么连续性讨论闭区间,可导性讨论开区间?

函数在端点处存在左连续和右连续且连续性要求在这一点的函数值等于这一点的极限值,讨论函数连续性时端点处的也存在连续性,而导数要求左右极限存在且相等,则这一点倒数存在.

这个怎么函数分区间表示

再问:那么当y等于5减去x的绝对值怎么分区间表示再答:表述不是很清。如果是y=|5-x|,那么y={5-x(x=5)如果是y=5-|x|,那么y={5+x(x=0)。再问:那么y=-5+|x|呢再答:

讨论

解题思路:多积累课外文化知识。解题过程:1、秦时明月汉时关,万里长征人未还。2、谚语:不到长城非好汉。传说:孟姜女哭长城。对联:辽海吞边月;长城锁乱云。3、长城是古代中国在不同时期为抵御塞北游牧部落联