则W是R^n的子空间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:06:40
则W是R^n的子空间
所有n阶非可逆矩阵的集合为全矩阵空间Mn(R)的子空间.(×)请问老师这道题为何错误!

要想构成子空间,必须满足两个条件:任取A,B位于E,则A+B位于E,kA位于E.其中E是不可逆矩阵的集合.但可取A=1000B=0001则A+B=1001是可逆阵,不位于E中.上面举的是2阶方阵,一般

证明或举反例:如果U1 U2 W是V的子空间,使得V=U1⊕W V=U2⊕W 那么U1=U2 (V是F上的向量空间)

反例:取V为2维向量空间,W为向量(1,0)生成的子空间,U1为向量(0,1)生成的子空间,而U2为向量(1,1)生成的子空间.易验证U1∩W={0},U2∩W={0},再由维数讨论可得V=U1⊕W,

高等代数证明题设a,b是几何空间V3的向量,证明:集合W={kA+lB | k,l∈R}是V3的一个子空间 (A,B是向

验证W对于V3的两种运算是封闭的即可.首先知W非空对任意p属于w,则存在p1,p2,使得p=p1*a+p2*b kp=kp1*a+kp2*b,kp1,kp2属于R,则可知kp属于W任意p,q

设w为线性空间v的一个子空间,证明w的正交补w^⊥是v的一个子空间

设α,β∈W^⊥则任意γ∈W,(α,γ)=0=(β,γ)故(α+β,γ)=(α,γ)+(β,γ)=0+0=0故α+β⊥γ=>α+β∈W^⊥且(kα,γ)=k(α,γ)=0故kα⊥γ=>kα∈W^⊥故W

o i w r g n 组成的英语单词是?

owing名词,“划船”的意思.

在线性空间R^3中,设α=(1,1,1),β=(1,2,3),由α和β生成子空间W=L(α,β),则W的正交补为____

解:111123r2-r1111012r1-r210-1012基础解系为c=(1,-2,1)^T所以W的正交补为c生成的子空间L(c).

证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关

零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属

一道线性代数中关于线性空间的题:设W是P(n*n)的全体由AB-BA的矩阵所生成的子空间,证明dimW=n^2-1

这个问题分两步走.1你首先得说明W={X|X=AB-BA}是线性空间2W的维数为n^2-1其实呢,只要当你说明1后,2自然也就解决了说明1,你需要一个定理定理:方阵C能分解成AB-BA的形式,充分必要

w1和w2是维线性空间v的两个n-1维子空间,则w1和w2的并的最大维数是n-1,最小维数是n-2

错.反例:设w1的基为(1,0,0)',(0,1,0)w2的基为(0,0,1)'则w1与w2的并为R^3,维数为3

设W是n维向量空间V中的一个子空间,且0

给你一个思路吧设dimW=rW=L(l1,...,lr),l1,...,lr线性无关则存在n-r维的相向组p1...,p(n-r),使得L(p1,...,p(n-r))是W的余子空间令q=p(n-r)

在线性空间Pn乘以n中,A是一个取定的n阶方阵.证明所有与A乘法互换的矩阵全体W是P的一个子空间

设B,C是W中任意两个元素,则(kB)A=k(BA)=k(AB)=A(kB),即kB∈W.(B+C)A=BA+CA=AB+AC=A(B+C),即B+C∈W,因此W对于加法和数乘运算封闭,W是一个子空间

n维向量空间的子空间W={(X1,X2,.Xn):一个方程组X1+X2+.Xn=0和X2+.Xn=0}的维数是n-2!

方程组X1+X2+.Xn=0X2+.Xn=0的系数矩阵的秩为2故其基础解系含n-2个向量它们构成W的基故W的维数是n-2

设W是R^n的一个非零子空间,而对于W的每一个向量(a1,a2.an)来说,要么a1=a2=.=an=0,要么每一个ai

反证法足矣:若dimW>=2,任取两个线性无关的向量a=(a1,a2,...,an)和b=(b1,b2,...,bn).由于a1,b1都不是0,则取k1=-b1,k2=a1,非零向量c=k1a+k2b

设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核.

设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一

证明所有m*n矩阵的集合是一个m*n维的线性子空间

m*n个元素中只有一个,明显是1,其余的是0,这样的矩阵有m*n个1,这m*n个矩阵构成一组基2,任意m*n阶矩阵可由这m*n个矩阵线性表示(普通意义上的矩阵加法和数乘)所以求证所有m×n阶矩阵的集合

设V是数域P上的线性空间,W是V上的一个非空子集,则W是V的子空间的判别条件为________

则W是V的子空间的判别条件为________对任意k1∈P,k2∈P和α∈W,β∈W有k1α+k2β∈W.亦即:W对V上的线性运算封闭.