.求函数y=sin^2x 2sinxcosx-cos^2x的周期.值域和单调区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:09:38
函数的周期T=2πω=2π2=π,由-π2+2kπ≤2x+π3≤π2+2kπ,解得−5π12+kπ≤x≤π12+kπ,即函数的递增区间为[−5π12+kπ,π12+kπ],k∈Z,由2x+π3=π2+
∵y=sin(2x+π3),∴由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z.得kπ-5π12≤x≤kπ+π12,k∈Z.∴当k=0时,递增区间为[0,π12],当k=1时,递增区间为[7π12,π
y=(cosx+2)/(sinx-1)ysinx-y=cosx+2ysinx-cosx=y+2√(y²+1)sin(x-t)=y+2,t=arctan(1/y)sin(x-t)=(y+2)/
∵(π3+4x)+(π6-4x)=π2,∴cos(4x-π6)=cos(π6-4x)=sin(π3+4x),∴原式就是y=2sin(4x+π3),这个函数的最小正周期为2π4,即T=π2.当-π2+2
由化简sinx+cosx前分别乘以根号2*sin45.根号2*cos45.,得解根号2sinxy=sinx的平方+根好2*sinx+2令t=sinx-1=
y=sin^2x+sinx=(sin^2x+sinx+1/4)-1/4=(sinx+1/2)^2-1/4sinx=-1/2时有最小值-1/4sinx=1时有最大值2
不知道sinx是指数还是其他的,如果是y=xsinx的话,f'(x)=sinx+xcosx,如果sinx是x的指数的话,f'(x)=(sinx-1)*x^(sinx-1)
要搞清楚变换的过程,从sinx到sin(2x)周期变为原来的1/2,再到sin(2x+pi/6),即为sin(2(x+pi/12)),是向左平移了pi/12个单位长度.所以[-pi/6,pi/6]上式
2*cos(x^2)*x/sin(x)^2-2*sin(x^2)*cos(x)/sin(x)^3
解由y=sin(pai/4-2x)=-sin(2x-π/4)知当2kπ-π/2≤2x-π/4≤2kπ+π/2,k属于Z时,y是减函数.即当kπ-π/8≤x≤kπ+3π/8,k属于Z时,y是减函数.故函
y=sin(x+π/3)sin(x+π/2)=sin(x+π/3)cosx=(sinxcosπ/3+cosxsinπ/3)cosx=1/2sinxcosx+√3/2cos^2(x)[cos^2(x)指
[3/2,13/4]
答:因为:(sinx)'=cosxy=-(sinx)^2y'(x)=-2sinx*(sinx)'y'(x)=-2sinxcosxy'(x)=-sin(2x)
原式=2-3/(1+sinα)1+sinα的范围是[0,2]所以-3/(1+sinα)的范围是[-oo,-3/2]原式值域为[-oo,1/2]
y=sin²x+sinxcosx+2=(1-cos2x)/2+(sin2x)/2+2=(1/2)(sin2x-cos2x)+5/2=(1/2)*√2(sin2xcosπ/4-cos2xsin
原式=(1-cos2x)/2+(sin2x)/2+2=(sin2x-cos2x)/2+5/2=(sin(2x-45度))*(根号2)/2+5/2所以是大于(根号2+5)/2,小于(5-根号2)/2
原式y=sinx^2+2xdy/dx=2x·cosx^2+2
y=sin(π2+x)cos(π6-x)=cosx(32cosx+12snx)=32cos2x+12sinxcosx=34(1+cos2x)+14sin2x=12sin(2x+π3)+34∴T=2π2
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
y=cos²x-sin²x+2sinxcosx=cos2x+sin2x=√2sin(2x+π/4)所以值域为【-√2,√2】