初三数学 如图,直线AC切圆O于点A,点B在圆O上,且AB=AC=AO

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:33:58
初三数学 如图,直线AC切圆O于点A,点B在圆O上,且AB=AC=AO
如图,AB是圆O的直径,AC切圆O于点A,且AC=AB,CO交圆O于点P,CO的延长线交圆O于点F,BP的延长线交AC于

1)由圆的性质知:直径所对角为90°则∠BPA=90°,∠FAP=90°那么∠PFA+∠FPA=90°,∠BPF+∠FPA=90°则∠PFA=∠BPF(内错角相等)所以AF∥BE2)显然∠PAC=∠C

如图:已知ac是圆o的直径pa垂直ac,连结op,弦cb平行op,直线pb交直线ac于d,bd=2pa证明pb是圆o的切

∵cb//op∴∠aop=∠acb∵ob=oc(bc是弦)∴∠acb=∠obc∵cb//op所以∠obc=bop∴∠aop=∠acb=∠obc=∠bop又有ob=oa,op=op∴△aop≌△bop∴

数学初三 的圆的问题如图.A.B.C为圆O上的三点,D.E分别为弧AB,AC的中点,连接DE,分别交AB.AC于点F.G

连结DO,交AB于H,连结EO,交AC与I则AB⊥DO,AC⊥EO,即∠AHD=∠AIE=90°又∵DO=EO,在等腰三角形DOE中,∠ODE=∠OED∴△DFH∽△EGI∴∠DFH=∠EGI对顶角相

如图,△ABC是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.

(1)证明:在△ABE和△ACD中,∵AB=AC,∠ABE=∠ACD又∠BAE=∠EDC∵BD∥MN∴∠EDC=∠DCN∵直线是圆的切线,∴∠DCN=∠CAD∴∠BAE=∠CAD∴△ABE≌△ACD(

如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,

证明:∵AB是⊙O的直径,∠ACB是直径所对的圆周角,∴∠ACB=90°.∵MP为⊙O的切线,∴∠PMO=90°.∵MP∥AC,∴∠P=∠CAB.∴∠MOP=∠B.故MO∥BC.

如图,AB是圆O的直径,P是弦AC延长线上的一点,且AC=CP,直线PB交圆O于点D.

如图∵AB是⊙O的直径∴∠AEB=90°,即AE⊥BC∴∠BAE+∠ABE=90°又∵CD⊥AB∴∠BCD+∠CBD=90°∴∠BAE=∠BCD又∠ADH=∠CDB∴△AHD∽△CBD∵O点是圆心,C

初三数学,求!1、  已知,如图,平行四边形ABCD的对角线AC、BD相交于点O.E为平行四边形ABCD中DC

1.答:因为CF平行于AD所以角EFC等于角EAD角ECF等于角EDA所以三角形ECF相似于三角形EDA又因为CE等于DC所以CE等于1/2ED所以CF等于1/2AD所以CF等于1/2BC(F为BC中

平行四边形 如图 平行四边形ABCD中,AB⊥AC,对角线AC、BC相交于点O,将直线AC绕点O顺时针旋转,分别交BC,

三角形ABC和三角形COE始终是相似三角形(证明就好)CE/BE=CO/AO=1/2,所以,CE=1/2BCAF=1/2AD因为,AD=BCCE=AF且平行,所以是平行四边形.三角形AOF和三角形CO

初三数学如图,已知直线Y=1/2X与双曲线Y=K/X交于AB两点,且A的横坐标为4.过原点O的另一条直线l交双曲线于PQ

把A点横坐标X=4代入Y=1/2X,得Y=2,即点A为(4,2);把A点坐标代入Y=K/X,得K=8,即双曲线解析式为Y=8/X.连接AP,PB,BQ,QA,由于正比例函数与双曲线函数图象都是关于原点

已知:如图,在平行四边形ABCD中对角线AC、BD相交于点O,直线EF过点O,分别交AD、BC于

因为四边形ABCD是平行四边形,所以AC和BD互相平分,所以BO=DO,又角EDO=角FBO角BOF=角DOE所以三角形BOF全等于三角形DOE,所以EO=FO.同理可证三角形BOG全等于三角形DOH

如图,平行四边形ABCD的对角线AC与BD相交于点O,直线EF过点O,且与AB,DC分别相交于点E和点F,直线GH过点O

∵ABCD为平行四边形,可得:∠OBE=∠ODF,OD=OF∵∠BOE与∠DOF为对角,所以∠BOE=∠DOF∴△BOE≌△DOF(角边角)∴OE=OF同理可证OH=OG∴可得四边形GEHF是平行四边

如图,在平行四边形ABCD中,对角线AC与BD相交于点O,直线EF过点O,分别交AD、BC于点E、F,直线GH过点O,

∵AC、BD为□ABCD的对角线的交点,且相交于点O,∴OA=OC,∵AD∥BC,∴∠EAO=∠FCO,又∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF.同理OG=OH,∴四边形EGFH为平行

如图①,四边形ABCD是平行四边形,对角线AC,BD相交于点O,过点O做直线EF分别交AD,BC于点E,F.

(1)证明:因为四边形ABCD是平行四边形所以OA=OCAD平行BC所以角OAE=角OCF角OEA=角OFC所以三角形OEA和三角形OFC全等(AAS)所以OE=OF(2)结论成立证明:因为四边形AB

如图,已知MP切圆O于点M,直线PO交圆O于点A、B,弦AC平行MP,求证:MO平行BC.

证明:∵AB是⊙O的直径,∠ACB是直径所对的圆周角,∴∠ACB=90°.∵MP为⊙O的切线,∴∠PMO=90°.∵MP∥AC,∴∠P=∠CAB.∴∠MOP=∠B.故MO∥BC.

如图①,AB是圆O的直径,AC是弦,直线CD切圆O于点C,AD⊥CD,垂足为D 求证:AC²=AB.AD

证明:(1)连接BC,OC∵AB是⊙O的直径∴∠ACB=90°∵AD⊥CD∴∠ADC=90°∴∠ACB=∠ADC∵OA=OC∴∠OCA=∠OAC∵直线CD切⊙O于点C∴∠OCA+∠ACD=90°又∠O

急!【初三数学 圆】如图,△ABC中AB=AC,以AB为直径的⊙O交BC于点E,过B作○O的切线,交AC的延长线于D

连接AEAB为直径》》AEB=90AB=AC》》BAE=CAEBD为切线》》CBD=BAECBD=1/2*cab望采纳!谢谢!

如图AB圆O的直径,AC平分角DAB交圆O于点C,直线CD垂直AD,求证:直线CD是圆O的切线,若AD交圆O于点E,连结

证明:1.连接OC∵OA,OC是圆O的半径∴∠CAO=∠ACO①又已知AC平分角DAB交圆O于点C则∠CAD=∠CAO②由①②得∠CAD=∠ACO则OC//AD③∵直线CD垂直AD④∴由③④得直线CD

如图,PA切⊙O于A点,PO平行AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?并证明.

PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O