判别下列级数的收敛性2 3 3 5 4 7

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:06:12
判别下列级数的收敛性2 3 3 5 4 7
交错级数的收敛性判别的收敛性.图片挡住字了,判别它的收敛性。

一看就是没把课本看透就做题的同学,空中楼阁!满足莱布尼茨收敛条件,故级数收敛!再问:我试过莱布尼茨定理,可是不会证an≥an+1..您可不可以详细说说怎么证?再答:这个很容易啊,因为反正切严格单调递增

判别级数收敛性 

级数收敛.通项a[n]=4^n/(5^n-3^n)=(4/5)^n/(1-(3/5)^n).可知a[n]/(4/5)^n=1/(1-(3/5)^n)→1.即a[n]与(4/5)^n是等价无穷小.根据比

1.用比较判别法或其极限形式判别下列级数地收敛性

用比较判别法可做.经济数学团队帮你解答.请及时评价.

微积分问题,判定下列级数的收敛性,

拆分成两个数列=Σ(ln2/2)^n+Σ(1/3)^n利用公比绝对值小于1的几何级数收敛和收敛级数+收敛级数还是得到收敛级数第一个02所以0

判别一个【级数】的收敛性

判断级数是否收敛,首先判断通项是否收敛,但这是必要条件,也就是说通项不收敛,级数一定不收敛,通项收敛但级数不一定收敛.所以先判断通项是否收敛.判断通项是否收敛,一眼就可以看出通项是收敛的,那么只好求级

判别级数收敛性的方法有哪些?

首先可根据级数收敛的必要条件,级数收敛其一般项的极限必为零.反之,一般项的极限不为零级数必不收敛.若一般项的极限为零,则继续观察级数一般项的特点:若为正项级数,则可选择正项级数审敛法,如比较、比值、根

判别级数的收敛性

1、级数和性质:2个收敛级数,其和收敛.2个等比数列,当然分别收敛.2、根据莱布尼兹交错级数收敛条件:1、An+1小于等于An2、An趋于0,那么此级数收敛.属于条件收敛,因为加绝对值以后,此级数大于

微积分问题,用比较判别法或其极限形式判别下列级数的收敛性.2题哦,

1.sin(π/2^n)0∵∑{1,inf}1/n发散,∴∑{1,inf}1/√n*sin(2/√n)/发散

用比较判别法判定级数的收敛性

第一题,通项1/lnn>1/n,由于调和级数1/n发散,根据比较审敛发,级数1/lnn发散.第二题都不用比较审敛法,通项[n/(2n+1)]^2当n趋于无穷时极限不等于0,根据级数收敛的必要条件,该级

判别无穷级数的收敛性的方法有哪些

1.先看级数通项是不是趋于0.如果不是,直接写“发散”,OK得分,做下一题;如果是,转到2.2.看是什么级数,交错级数转到3;正项级数转到4.3.交错级数用莱布尼兹审敛法,通项递减趋于零就是收敛.4.

判别级数的收敛性(有图)

两个分子相除后得到(n+2)!×(n+2)^n,两个分母相除后得到(2n+2)!,所以最后结果就如答案所写再问:你好请问(n+2)!-------------(2n+2)!就是等于1---------

利用比较判别法或极限形式判别级数的收敛性,请问怎么做的?

lim【(n-1)/(n^2+1)】/【1/n】=1即与1/n同阶,而1/n是发散的,所以发散

判别级数的收敛性  

先求前N项和,再当N趋向于无穷大时求极限,如果极限存在则收敛,极限不存在或为无穷大则发散

运用比较原则判别 级数的收敛性

1/n^(2nsin1/n)/1/n^2=n^(2-2nsin1/n)取个对数(2-2nsin1/n)*lnn这里罗必塔不知道好不好做看sin1/n的泰勒展开sin1/n=1/n-(1/n)^3/3!

一道判别级数收敛性的题,如图所示

乍一看题目,通过a_(n+1)/a_n,Raabe判别法都行不通:所以考虑简单一点的判别法——比较判别法,放缩如下:(n>3时)由于∑1/(n+2)发散,所以原级数发散.

利用级数的性质和收敛的必要条件判别下列级数的收敛性,只把第一小题做了就好啦,

这是刚学级数吗?首先通项1/2^n-1/3^n>0,是正项级数.由1/2^n-1/3^n可知∑{1≤n}(1/2^n-1/3^n)如果学了比较判别法,可以直接由∑{1≤n}1/2^n收敛证明原级数收敛

有比较法或其极限形式判别下列级数的收敛性

用比较法极限形式,作比较的为(π/3^n)limn->∞|sin(π/3^n)/(π/3^n)|令t=π/3^n->0=limt->0|sin(t)/t|=1由比较法极限形式,所以两个级数收敛性相同我