判别下列级数的收敛性∑n=0,∞1 an b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:17:40
判别下列级数的收敛性∑n=0,∞1 an b
第十一章 无穷级数 1.用比较判别法或起极限形式判定下列级数的收敛性; 注:(∑上面有个无穷大下面有个n

教学目的和要求:高等数学是高等院校大部分专业的一门重要基础理论课,是深入学习专业课程的必备基础.随着数学在各学科中的应用日夜广泛,作为地理、环科、心理等专业的学生无论将来从事科研工作还是教学工作,都应

判别级数收敛性 

级数收敛.通项a[n]=4^n/(5^n-3^n)=(4/5)^n/(1-(3/5)^n).可知a[n]/(4/5)^n=1/(1-(3/5)^n)→1.即a[n]与(4/5)^n是等价无穷小.根据比

判别一个【级数】的收敛性

判断级数是否收敛,首先判断通项是否收敛,但这是必要条件,也就是说通项不收敛,级数一定不收敛,通项收敛但级数不一定收敛.所以先判断通项是否收敛.判断通项是否收敛,一眼就可以看出通项是收敛的,那么只好求级

利用比值判别法判断级数 ∑(无穷大 n=1) n^2/2^n的收敛性

因为an=n^2/2^n,a(n+1)/an=(n+1)^2/2^(n+1)/(n^2/2^n)=(1/2)*(1+1/n)^2趋向于1/2

判别级数收敛性的方法有哪些?

首先可根据级数收敛的必要条件,级数收敛其一般项的极限必为零.反之,一般项的极限不为零级数必不收敛.若一般项的极限为零,则继续观察级数一般项的特点:若为正项级数,则可选择正项级数审敛法,如比较、比值、根

判别级数 ∑ n的平方/3的n次方 的收敛性.n=1

收敛.1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到1/3,因为绝对值小于1,所以收敛

判别级数的收敛性

1、级数和性质:2个收敛级数,其和收敛.2个等比数列,当然分别收敛.2、根据莱布尼兹交错级数收敛条件:1、An+1小于等于An2、An趋于0,那么此级数收敛.属于条件收敛,因为加绝对值以后,此级数大于

判别级数∑(1到正无穷)[(-1)^n*√n]/(n-1)的收敛性

收敛.这是交错级数,由Leibniz准则,后项绝对值小于前项绝对值(可有二者作商平方比较出),然后一般项绝对值极限为零,所以可判定其收敛再问:有没有具体过程啊。。。再答:首先它是交错级数,那(-1)^

判别级数的收敛性(有图)

两个分子相除后得到(n+2)!×(n+2)^n,两个分母相除后得到(2n+2)!,所以最后结果就如答案所写再问:你好请问(n+2)!-------------(2n+2)!就是等于1---------

高数题:判别级数的收敛性,∑(-1)^n √[n/(n+1)]

是条件收敛的,分析过程如图.经济数学团队帮你解答.请及时评价.

判别级数的收敛性  

先求前N项和,再当N趋向于无穷大时求极限,如果极限存在则收敛,极限不存在或为无穷大则发散

运用比较原则判别 级数的收敛性

1/n^(2nsin1/n)/1/n^2=n^(2-2nsin1/n)取个对数(2-2nsin1/n)*lnn这里罗必塔不知道好不好做看sin1/n的泰勒展开sin1/n=1/n-(1/n)^3/3!

判别级数收敛性比较审敛法:∑(∞ n=1) (ln n)/n^(4/3)那(ln n)/n^(1/6)的极限为什么是0?

收敛,用P判别法(也就是比较审敛法)可以有(lnn)/n^(4/3)*n^(7/6)=(lnn)/n^(1/6)极限是0所以原级数收敛其实lnn^εε→0+那(lnn)/n^(1/6)的极限为什么是0

一道判别级数收敛性的题,如图所示

乍一看题目,通过a_(n+1)/a_n,Raabe判别法都行不通:所以考虑简单一点的判别法——比较判别法,放缩如下:(n>3时)由于∑1/(n+2)发散,所以原级数发散.

∑{[n!(a^n)]/(n^n)}其中n从1到正无穷,a>0,用笔直判别法判别级数收敛性

由比值判别法得以下全为limn->无穷(u_n+1)/(u_n)=[(n+1)!a^(n+1)/(n+1)^(n+1)]/[n!(a^n)]/(n^n)=a(n/n+1)^n下面求出(n/n+1)^n