判定下列广义积分的敛散性∫(0到正无穷)xe^-xdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:58:47
判定下列广义积分的敛散性∫(0到正无穷)xe^-xdx
下列广义积分的收敛性,求出收敛的广义积分的值

1、被积函数x/(1+x^2)等价于1/x,当x趋于无穷时,而1/x的广义积分发散,因此原积分发散.2、e^(--ax)的原函数是e^(--ax)/(--a),当x趋于正无穷时,只有a>0时才有极限0

判断广义积分的收敛性

1<p<2时收敛,其它发散

关于广义积分的问题!广义积分∫x^3e^(-x)dx积分上限为:正无穷积分下限为:0怎么解出的答案.

用分步积分法,先把e^(-x)放到微分符号后面,然后使用分部积分公式:原式=-∫x^3de^(-x)=∫e^(-x)d(x^3)-(x^3)e^(-x)(一定要写上下限)注意上式中的后面一项在正无穷大

求下列广义积分的敛散性∫上限是正无穷,下限是0(xe的-x次方dx)

∫xe^(-x)dx=lim∫xe^(-x)dx=lim[-xe^(-x)-e^(-x)]|=lim[-ue^(-u)-e^(-u)+1]=lim[-u/e^u-1/e^u]+1=1收敛

判断下列广义积分的敛散性∫x^3e^(-x^2)dx,[0,∞]

直接算.=1/2∫(0,+∞)x^2e^(-x^2)dx^2=1/2∫(0,+∞)te^(-t)dt=1/2∫(0,+∞)e^(-t)dt=1/2

广义积分的敛散性,∫(正无穷,0)sinxdx

发散.因为sinx是周期函数,值不确定.

讨论广义积分∫【1,0】dx/x^q的敛散性.

∫【1,0】dx/x^q=【1,0】x^(1-q)/(1-q)=1/(1-q)-lin(x->0+)x^(1-q)/(1-q)=1/(1-q)+lin(x->0+)(1/x)^(q-1)/(q-1)=

关于广义积分的问题

首先换元,令t=x-1,把被积函数换为(t^2+2t+1)*e^{-t^2}*e,积分限为0到正无穷.2t*e^{-t^2}这项的积分比较简单,等于1.比较难的是求t^2*e^{-t^2}的积分.令f

高数:下列广义积分收敛的是

求出原函数即可,ABCD的原函数分别为(1/2)(lnx)*2,ln(lnx),-1/(lnx),2√(lnx),容易看出原函数在x=0和x=+∞处极限都存在的只有-1/(lnx),因此C收敛.

讨论下列广义积分的敛散性,如果收敛计算其值

1.∫e^-xdx(1,+∞)=-e^(-x)(1,+∞)=-e^(-∞)+e^(-1)=1/e2.∫1/√xdx(1,+∞)=2√x(1,+∞)=2√∞-2√1=∞不收敛3.∫x/√(1-x^2)d

按定义判断下列广义积分的敛散性 若收敛求其值 拜托了就是第十题.

再答:所以,广义积分收敛。且其值为1再答:所以,广义积分收敛。且其值为-1

P185 判断广义积分的敛散性,若收敛计算其值 1 .∫[0,+∞](e^-x)sinxdx

∫[0,+∞](e^-x)sinxdx=∫[0,+∞]-sinxde^(-x)=-sinxe^(-x)|+∫[0,+∞]e^(-x)dsinx=∫[0,+∞]e^(-x)cosxdx=∫[0,+∞]-

判断广义积分的敛散性,:∫(0,负无穷)e^(2x)dx

∫(-∞,0]e^(2x)dx=1/2e^(2x)(-∞,0]=1/2

判断下列各广义积分的敛散性,若收敛,计算其值:

 原式=-1/2x^(-2)|(1,+∞)=-1/2(0-1)=1/2收敛;原式=-1/ae^(-ax)|(0,+∞)=-1/a(0-1)=1/a所以都收敛.

讨论广义积分∫(1,2) dx/(xlnx)的敛散性

那个原函数可以求出来啊,是ln(lnx)+C由此可知此积分发散再问:求原函数的过程可以写出来吗?再答:∫dx/(xlnx)=∫d(lnx)/lnx=ln(lnx)+C再问:请问∫dx/(xlnx)=∫

求下面广义积分的敛散性

再答:满意请采纳,谢谢再问:图片点不开怎么回事再答:

一道广义积分题.研究下列积分的敛散性

要知道积分(从1到无穷)sinx/x^pdx在p>0时收敛(用Dirichlet判别法),p1时,sin(a+x)的部分积分有界,x/(1+x^a)是递减趋于0的函数,Dirichlet判别法知道收敛