判断fx=a x x的单调性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:16:19
解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2
奇偶性首先判断定义域:x∈(-∝,0)∪(0,+∝)关于原点对称然后f(-x)=-x+(1/-x)=-f(x)∴f(x)是奇函数任意x1<x2且∈(1,+∝)有f(x1)-f(x2)=x1+1/x1-
解由f(x)=x/(x^2-1)设x1.x2属于(-1,1)且x1<x2即f(x1)-f(x2)=x1/(x1^2-1)-x2/(x2^2-1)=[x1(x2^2-1)-x2(x1^2-1)]/(x2
f(x)=x^3+ax^2+bx+1f'(x)=3x^2+2ax+b因为f'(1)=3+2a+bf'(2)=12+4a+b由题意.f'(1)=2a-6f'(2)=-b-18.组成方程组3+2a+b=2
f(x)=(2^x-1)/(2^x+1)是R上的增函数.证明:设x1
当a=0的时候f(x)=-x^2-lnxf'(x)=-2x-1/x令f'(x)=0得到=-2x-1/x=0,无解显然在(-∞,0)f'(x)>0在(0,+∞)f'(x)
用定义法再问:不会。。求解。。再答:任取X1,X2∈(0,+∞),且X2>Ⅹ1用f(x2)-f(x1)如果>0↑如果<0↓再问:你的回答完美的解决了我的问题,谢谢!
f(x)=x/(1+x)=1-1/(1+x),∵-1/x在(0,+∞)上单调递增,-1/(1+x)是-1/x向左平移1个单位得到,∴-1/(1+x)在(-1,+∞)上单调递增,加个常数不影响单调性,即
f(x)=x^2-2ax+3=(x-a)^2+3-a^2所以函数为开口向上以a为对称轴的二次函数当a《-2时函数在(-2,2)上单调递增当-2
解题思路:本题主要是判断函数的单调性,可以利用函数的定义来判断,注意对参数的讨论.解题过程:见附件
f(x)=lnx-1/x的定义域为x>0f(x)在定义域内是增函数.设0
好像只能用导数解f'(x)=1/2(3^xln3-3^-xln3)=(ln3(3^x-3^-x))/2令f'(x)=0,得x=0当x∈(-∞,0)时,f'(x)
解题思路:利用单调性的定义(设值;作差;变形;判断符号;确定大小;下结论)。解题过程:还可以证明:f(x)=x+1/x在(1,+∞)上是增函数。
f(x)=x+(根号x2+1)的定义域为:(-∞,+∞)设x1=p>x2=q,则f(p)-f(q)=[p+√(1+p^2)]-[q+√(1+q^2)]=(p-q)+[√(1+p^2)-√(1+q^2)
函数的定义域(0,+oo),f'(x)=1/x-a;当a
f(x)=2sin(π/4x+π/4)y=f(x)+f(x+2)=2sin(π/4x+π/4)+2sin[π/4(x+2)+π/4]=2sin(π/4x+π/4)+2sin[π/4x+π/2+π/4]
fx=√(x+1)-√x=1/(√(x+1)+√x),任给x1>x2>0,有f(x1)-f(x2)=1/(√(x1+1)+√x1)-1/(√(x2+1)+√x2),因为x1>x2>0,所以√(x1+1
在(-π/2+2kπ,2kπ)及(π+2kπ,3π/2+2kπ)为减函数在(2kπ,π/2+2kπ)及(π/2+2kπ,π+2kπ)为增函数
任取X1,X2属于R,且X10则函数单调递减若F(X1)-F(X2)