判断下列曲线的凹凸性y=xarctanx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:11:14
判断下列曲线的凹凸性y=xarctanx
函数曲线凹凸性里的 

在(a,b)上f‘’(x)≥0,则f‘(x)单调递增,若x≥x0则,f(x)≥f(x0),若x≤x0则,f(x)≤f(x0),有f(x)二阶可导,必一阶可导,现考虑x≥x0,根据微分中值定理:W

y=x^2+1/x求曲线的凹凸区间与拐点

函数 的定义域是x不等于0的所有实数.y'=2x-1/x^2y''=2+2/x^3令y''=0解得x=-1,当x0,所以曲线y=f(x)在(-无穷,-1)上是凹的,当-1

求y=ln(1+x^2)曲线的凹凸区间与拐点?

y=ln(1+x²)定义域为Ry'=2x/(1+x²)=0y"=2(1-x²)/(1+x²)²令y"=0得x=±1当x∈(-∞,-1),y"

求曲线y=xe的2x平方的凹凸区间及拐点

再问:设函数f(x)=x的平方(x的9次方+x的3次方+1),求高阶导数f的12次方(x)再答:0,多项式才11次方

求曲线y=x^3-x^2-x+1 的凹凸区间和拐点.

y=x^3-x^2-x+1y'=3x²-2x-1y''=6x-2=0x=1/3x0x=1/3,y=16/27即拐点为(1/3,16/27)凸区间为(-∞,1/3)凹区间为(1/3,+∞)

求曲线y=x^2lnx的凹凸区间及拐点,

y’=2xlnx+x;y”=3+2lnx当x>e^(-3/2),y”>0时函数的图形在(e^(-3/2),+∞)内是凹的.当x

函数y=x³-x²-x+1单调区间与极值并判断曲线的凹凸性,说出凹凸区间是多少,并求出拐点是多少.

y=f(x)=x^3-x^2-x+1y'=3x^2-2x-1=(3x+1)(x-1)y'=0的根为x1=-1/3,x2=1y''=f''(x)=6x-2=0的根为x=1/3,在x=1/3左右领域f''

研究曲线y=x^3+5x^2+4x+1的凹凸性,并求拐点.

求该函数的二阶导数,得:y"=6x+10当6x+10>0时,解出x>-5/3即当x>-5/3时,该曲线上凹.当6x+10

判断曲线凹凸性及拐点坐标

y'=3x^2-2x-1y''=6x-2拐点为y''=0处,X=1/3(1/3,16/27)当X0,为凹函数极值:y’=0,解得X1=1,X2=-1/3当X=1时,y''>0,为极小值,y=0当X=-

怎样判断函数的凹凸性?

高等数学.,在区间[a,b]内恒成立f[(x+y)/2]

求曲线y=x^3-3x的凹凸区间和拐点

y'=3x^2-3=3(x-1)(x+1)=0,解得x=1,-1y''=6x=0,解得x=0所以x1为单调增区间.-1

求曲线y=3x^4+4x^3+1的凹凸区间和拐点

求二阶导数就解决再问:不会啊再答:求导都不会,放弃吧,你不适合学数学,还是搞艺术吧再问:应付考试的,我又不要去弄懂它再答:y'=12x^3+12x^2y''=36x^2+24xy''=0得x=0x=-

求曲线y=e^(-1/2*x^2)的凹凸区间及拐点

求二阶导数可以判断凹凸区间;二阶导数为零且在两侧异号的点,即是拐点.f'(x)=e^[(-1/2)x²)](-x),f''(x)=e^[(-1/2)x²)](-x)²-e

设函数设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.

反函数是表达不出来的,只能用隐函数求导法.即求该点的两阶导数.

y=xe^x 求曲线的凹凸区间与拐点

y=xe^x求曲线的凹凸区间与拐点是吗?设y=xe^(x/2)y‘=x'e^(x/2)+x[e^(x/2)]'=e^(x/2)+xe^(x/2)*(1/2)=e^(x/2)(1+x/2)y''=[e^

求曲线y=3x4-4x3+1的拐点及凹凸区间.

y′=12x3-12x2,y″=36x2-24x=12x(3x-2)令y″=0解得,x=0或x=23.所以曲线的拐点为(0,1),(23,1127).当x<0或x>23时,y″>0,则曲线的凹区间为(

判断函数y=2x的平方+x+1的单调性极值凹凸性拐点

求导得y=4x+1另y=0x=-1/4可知道x在-1/4为拐点,x=-1/4时,为单调递增所以x=-1/4为凹凸性拐点,最小值为当x=-1/4时,y=7/8