判断广义积分敛散性∫dx x^2 2x 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:22:54
|sinx|≤1,而级数1/(x^2)收敛由Abel判别法知收敛.再问:��ִ�0��ʼ��1/x^2�������ɣ�再答:�ðɹ������ⲻϸ==sinx�Ļ���ڷǸ�����н磬��1/x^
先分部积分∫a^xx^2dx=(1/lna)∫x^2da^x=a^xx^2/lna-(1/lna)∫a^x2xdx=a^xx^2/lna-(1/lna)^2∫2xda^x=a^xx^2/lna-(1/
1楼说的不对,是不是瑕点跟有没有定义没关系,而是看在它附近函数是否有界当q0时,1/x^q在0的任何邻域内无解,所以它是瑕积分讨论广义积分的敛散性实际上就是讨论原函数在瑕点的极限是否存在也就是lim(
1<p<2时收敛,其它发散
变量替换,令x^2=t,x=t^(1/2),dx=0.5dt/t^(1/2)原积分=0.5积分(从1到无穷)sintdt/t^(1/2),注意到sint的部分积分有界,t^(1/2)是递减趋于0的函数
∫[0→2]1/(x²-4x+3)dx=∫[0→2]1/[(x-1)(x-3)]dx=∫[0→1]1/[(x-1)(x-3)]dx+∫[1→2]1/[(x-1)(x-3)]dx积分收敛的充分
∫xtan²xdx设u=x,dv=tg^2xdx,则du=dx,v=tgx-x于是∫xtan²xdx=x(tgx-x)-∫(tgx-x)dx=x(tgx-x)+Ln|cosx|+x
应该是用展开式吧?展开成级数,当收敛时它的积分就简单了.
直接算.=1/2∫(0,+∞)x^2e^(-x^2)dx^2=1/2∫(0,+∞)te^(-t)dt=1/2∫(0,+∞)e^(-t)dt=1/2
发散.因为sinx是周期函数,值不确定.
=(-1/2)∫e^(-2x)d(-2x)=(-1/2)e^(-2x)|=(-1/2)[0-e^(-2)]=1/(2e²)
首先,你要明白广义积分有哪些形式:1,被积函数有瑕点2,上下限无界那么在第二种情况下,其实细分开来有有两种情况,在这一题里面,只有上限无界,而且在积分区域中没有瑕点,所以求出原函数可以直接带点进去计算
∫[2,+∞]1/(1-x^2)dx=1/2∫[2,+∞][1/(1-x)-1/(1+x)]dx=-1/2∫[2,+∞][1/(1+x)-1/(x-1)]dx=-1/2[ln(1+x)-ln(x-1)
∫[0,+∞](e^-x)sinxdx=∫[0,+∞]-sinxde^(-x)=-sinxe^(-x)|+∫[0,+∞]e^(-x)dsinx=∫[0,+∞]e^(-x)cosxdx=∫[0,+∞]-
∫(-∞,0]e^(2x)dx=1/2e^(2x)(-∞,0]=1/2
不知道呀.
原式=-1/2x^(-2)|(1,+∞)=-1/2(0-1)=1/2收敛;原式=-1/ae^(-ax)|(0,+∞)=-1/a(0-1)=1/a所以都收敛.
那个原函数可以求出来啊,是ln(lnx)+C由此可知此积分发散再问:求原函数的过程可以写出来吗?再答:∫dx/(xlnx)=∫d(lnx)/lnx=ln(lnx)+C再问:请问∫dx/(xlnx)=∫