判断直线y=3x 3与y=-3分之1x 3的位置关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:29:51
判断直线y=3x 3与y=-3分之1x 3的位置关系
与直线3x+y-10=0平行的曲线y=x3-3x2+1的切线方程为______.

设与直线3x+y-10=0平行且与曲线y=x3-3x2+1相切的切线与曲线的切点为(x0,x03−3x02+1),由y=x3-3x2+1,得y′=3x2-6x,则y′|x=x0=3x02−6x0.所以

若直线y=x是曲线y=x3-3x2+ax的切线,则a=______.

设切点P(x0,x0)∵直线y=x是曲线y=x3-3x2+ax的切线∴切线的斜率为1∵y=x3-3x2+ax∴y′︳x=x0=3x2-6x+a︳x=x0=3x02-6x0+a=1①∵点P在曲线上∴x0

垂直于直线2x-6y+1=0且与曲线y=x3+3x2-1相切的直线方程为______.

设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为y=-3

已知曲线C:y=x3-3x2+2x,直线l:y=kx,且直线l与曲线C相切于点(x0,y0)(x0≠0),求直线l的方程

∵直线过原点,则k=y0x0(x0≠0).由点(x0,y0)在曲线C上,则y0=x03-3x02+2x0,∴y0x0=x02-3x0+2.又y′=3x2-6x+2,∴在(x0,y0)处曲线C的切线斜率

因式分解公式(x+y)3=(x-y)3=x3+y3=x3-y3=

(x+y)³=x³+y³+3x²y+3xy².记忆方法:各立方,然后3x方y,3xy方(x+y)³=x³-y³-3x&#

判断直线与圆的位置关系 直线y=-3分之根号下3与圆(x-4)²+y²=4

圆的圆心(2,0),半径为2>3分之根号下3所以相交

如果曲线y=x3+x-10的某一切线与直线y=4x+3平行,求切点坐标与切线方程.

∵切线与直线y=4x+3平行,斜率为4又切线在点x0的斜率为y′|_x0∵3x02+1=4,∴x0=±1,有x0=1y0=−8,或x0=−1y0=−12,∴切点为(1,-8)或(-1,-12),切线方

求平行于直线3x+y+1=0并且与曲线y=x3+3x2-5相切的直线方程

y=x3+3x2-5y‘=3x2+6x=-3x=-1y=-1即所求方程过(-1,-1),k=-3y=-3(x+1)-1

解一数学难题求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.(注:曲线是:y=x的立方加3x

求垂直于直线2x-6y+1=0说明被求直线斜率为-3对曲线y=x3+3x2-5求导y'=3x^2+6x=-3可解得x=-1,y=-3所以直线方程为y+3=-3(x+1)即y=-3x-6

垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程是 ______

设切点为P(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x切线的斜率k=y′|x=a=3a2+6a=-3,得a=-1,代入到y=x3+3x2-5,得b=-3,即P(-1,-3),y+3=

求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.

设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-

与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是______.

设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1)则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为3x+y+

直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则a-b=______.

由y=x3+ax+b,得y′=(x3+ax+b)′=3x2+a,所以曲线y=x3+ax+b在点A(1,3)处的切线的斜率k=3×12+a=3+a,又点A(1,3)在直线y=kx+1上,所以3=k×1+

直线y=kx+b与曲线y=x3+ax+1相切于点(2,3),则b的值为(  )

∵y=x3+ax+1过点(2,3),∴a=-3,∴y'=3x2-3,∴k=y'|x=2=3×4-3=9,∴b=y-kx=3-9×2=-15,故选C.

已知直线y=kx+1与曲线y=x3+ax+b切于点(1,3),则b的值为(  )

把(1,3)代入直线y=kx+1中,得到k=2,求导得:y′=3x2+a,所以y′x=1=3+a=2,解得a=-1,把(1,3)及a=-1代入曲线方程得:1-1+b=3,则b的值为3.故选A

已知直线y=kx+1与曲线y=x3+ax+b切于点(1,3),则a,b的值分别为______.

把(1,3)代入直线y=kx+1中,得到k=2,求导得:y′=3x2+a,所以y′|x=1=3+a=2,解得a=-1,把(1,3)及a=-1代入曲线方程得:1-1+b=3,则b的值为3.故答案为:-1

已知曲线y=x3+3x,求这条曲线平行于直线y=15x+2的切线方程

平行于直线y=15x+2则切线斜率是15导数就是切线斜率即求y'=3x^2+3=15x^2=4x=2,x=-2x=2,y=8+6=14x=-2,y=-8-6=-14所以切点是(2,14),(-2,-1

已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O、A,直线x=t(0

1.曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O、A联立方程组得y=x3y=-2x3+3x解得x=0,x=1则O、A坐标为(0,0)(1,1)直线x=t(0

直线y=x+3与曲线y

当x≥0时,曲线方程为y29-x24=1,图形为双曲线在y轴的右半部分;当x<0时,曲线方程为y29+x24=1,图形为椭圆在y轴的左半部分;如图所示,由图可知,直线y=x+3与曲线y29-x•|x|