判断矩阵相似
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:51:53
计算它们的特征多项式,如果是相同的,就相似.
不一样."等价关系"指的是满足自反、对称、传递三种性质的关系,适用于所有的学科、所有的数学分支.矩阵的等价指的是可以通过初等变换互换.至于为什么这样称呼,已经不知道原因了.可以给你一种便于理解的解释:
不对的,相似矩阵的性质1.相似矩阵有相同的特征值和特征多项式2.相似矩阵的行列式和迹都相同以上两条性质逆命题都不成立你的第二个问题我也从来没有听说过我只知道两个实对称矩阵在实数域上合同当且仅当他们的秩
判断两个矩阵相似,最好使用lamda-矩阵的有关理论.事实上,两矩阵相似的充要条件是它们有相同的不变因子,或它们有相同的行列式因子,或它们有相同的初等因子,或它们有相同的标准形(亦称Simithnor
判断2个矩阵相似的充要条件只有1个,Λ,Λ,B,2个矩阵相似的必要条件是“两个矩阵的秩相等,行列式也相等”,而非充要条件
这几个表示方式都可以只是习惯上把正数放前,负数在后,0在最后需注意的是:构成的可逆矩阵P的列向量(特征向量)必须与特征值所处的列对应!
实对称矩阵合同的充分必要条件是它们有相同的正负惯性指数第1个矩阵的正负惯性指数分别为2,1第2个矩阵对应的二次型经配方法可知其正负惯性指数分别为2,1故两个矩阵合同再问:可不可以将第二个矩阵的第一行和
解答如下:
这算是一个充要条件吧,不过一般描述为:两个矩阵相似的充要条件是它们有相同的特征值且相同特征值的重数也相同再问:你说的不对吧,特征值相等(包括重数)如果可以对角化,特征值在对角阵的位置也可以不一样啊。矩
详见:\x0d
若n阶方阵A有n个不同的特征值,则A相似于对角形若对A的k重特征值a,都有r(A-aE)=n-k,则A相似于对角形此等价于A的属于特征值a的线性无关的特征向量有k个再问:设A是3阶实对称矩阵,R(A)
相似的充要条件是它们的特征矩阵等价这个结论超出了线性代数的范围必要条件是行列式相等,特征值相同,迹相等当两个矩阵都可对角化时,相似的充要条件是特征值相同再问:再问:第七题怎么做啊再答:相似B有3个不同
如题,如果根据相似矩阵必有相同的特征值,相同的迹,相同的行列式的话,只能把A排除掉,B、C、D都与矩阵A有相同的迹,相同的行列式和相同的特征值啊.而且这是一道选择题,需要花的时间应该不多,那么应该有一
计算A的特征值为:4,0,0,0因为A是实对称矩阵,故存在正交矩阵Q(即Q^T=Q^-1),满足Q^-1AQ=diag(4,0,0,0)=B所以A与B相似,且合同.
如果给定两个具体的n阶方阵A和B,A和B相似的充要条件是λ-矩阵λI-A和λI-B相抵,这个只要对λ-矩阵做初等变换就可以判定如果给定两个具体的n阶实对称矩阵A和B,要判定是否合同只要把它们都化到合同
A,B,C都是相似的必要条件,但都不是充分条件线性代数范围并没有相似的充要条件(无Jordan标准形内容)但在可对角化条件下,相似的充要条件是特征值相同而可对角化的充要条件是有n个线性无关的特征向量或
A和B都是实对称矩阵,把特征值算出来就行了这里A和B相似且合同
1错2对.分析如图.经济数学团队帮你解答.请及时评价.
1.是否有n个特征值.2.只有对角线上值不为零的矩阵.=============好好看书啊
A不能B的特征多项式是(1-λ)(λ^2-3λ+1)没有重根,故可对角化