判断级数2-n*sin(1 n)-cos(1 n)的敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:50:40
数学问题不易从表面判断难度,自己想的题搞不好就和世界难题相关.好在你这道题目本身还算简单.由1/π是无理数,可用抽屉原理证明:存在无穷多组正整数m,n,满足|n/π-m|对满足上述要求的n,可知:|n
很简单(sinn)/n^2≤1/n^2因为|sinn|≤1∑1/n^2绝对收敛,所以原级数也绝对收敛
收敛.∑2^n/3^n是公比为2/3的等比级数,收敛.∑1/3^n是公比为1/3的等比级数,收敛.所以,原级数收敛.
泰勒级数展开,sin(1/n)~=1/n-(1/n)^3/6=1/n-6/n^3,所以nxsin(1/n)~=1-6/n^2,所以ln(nxsin(1/n))~=-6/n^2,所以求和是收敛的,因为1
收敛,因为当n充分大的时候,sin(1/n^2)
Un=n/(2n-1)lim(n→∞)Un=(1/n)/[2-(1/n)]=1/2即n→∞时数列有极限1/2所以级数n/(2n-1)收敛您的采纳是我前进的动力~
∵(2n-1)!/(2n)!>[(2n-1)!/(2n)!]·(2n+1)/(2n+2)=(2n+1)!/(2n+2)!∴(2n-1)!/(2n)!单调递减由斯特林公式n!~[√(2πn)](n/e)
limsin[n/﹙n+1﹚]=sin1,不等于0而级数收敛的必要条件是通项收敛于0,所以发散
用根值派别法lim开n次方(u(n))=lim(2/n)开n次方(n!)=0无穷大
首先要把做比较我们都会找n^a(a是整数,可正可负)幂来比较,因为n^a性质我们都容易知道.其次我们会找等价(同阶)无穷大或者是等价(同阶)无穷小.这个题很明显的是n趋近无穷大时,1-sin{nπ/(
比较无穷小的阶1/n^21/(n^2-lnn)为同阶无穷小所以原级数与1/n^2敛散性相同.收敛
该级数实为1,0,-1/3,0,1/5,0,-1/7,0,……,1/4t,0,-1/(4t+2),0,……我们将1/4t,0,-1/(4t+2),0的和组成一项有an=1/4n-1/(4n+2)=1/
sin(1/n)~1/n原级数化为1/nln(n+2)这是一个重要的级数有级数从2到∞Σ1/n^p(lnn)^q有p>1或p=1且q>1是收敛p
根据比值判断法,(n+1)项/n项以n趋近于无穷大的比值为1,所以级数可能收敛也可能发散
只需要看后一项与前一项比值【2^n*n!/n^n】/【2^(n-1)*(n-1)!/(n-1)^(n-1)】=2n*(n-1)^(n-1)/n^n=2(n-1)^(n-1)/n^(n-1)=2【(n-
sinx-2/Pi*x这个函数,在0和Pi/2都等于0,并且在这个区间上是凹函数,所以大于等于0.
1/(n^α)-sin(1/n^α)趋向于无穷大时(运用sin(1/n^α)的泰勒展开)为1/(6n^(3α))+高阶小项所以α>1/3时,Σ1/(6n^(3α),收敛,原级数也发散α再问:能不用泰勒
sin(2/n)>sin(2/n+1),limsin(2/n)=0,莱布尼兹定理,收敛limsin(2/n)/(2/n)=1,∑2/n发散,条件收敛