判断级数的敛散性1 n*cos(1 n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:07:59
判断级数的敛散性1 n*cos(1 n)
如何判断级数 ∑1/[n*sin(n)]的敛散性?

数学问题不易从表面判断难度,自己想的题搞不好就和世界难题相关.好在你这道题目本身还算简单.由1/π是无理数,可用抽屉原理证明:存在无穷多组正整数m,n,满足|n/π-m|对满足上述要求的n,可知:|n

判断级数 ntan(1/3^n)的敛散性

用比值审敛法当n趋向正无穷Un+1/Un=(1+1/n)×tan(1/3^(n+1))/tan(1/3^n)因为tan(1/3^n)等价无穷小为(1/3^n)所以Un+1/Un=(1+1/n)×(1/

判断级数lnn/(n^2+1) 的敛散性

ln(n)=o(n),即ln(n)远小于n.而n/(n^2+1)~n/n^2=1/n收敛于0,因此ln(n)/(n^2+1)收敛于0.如果你要说的是级数求和的收敛性,也是收敛的.ln(n)=o(n^(

怎么判断级数 n/2n-1 的敛散性

Un=n/(2n-1)lim(n→∞)Un=(1/n)/[2-(1/n)]=1/2即n→∞时数列有极限1/2所以级数n/(2n-1)收敛您的采纳是我前进的动力~

既不是正项级数也不是leibniz级数的级数如何判断其敛散性?如:(-1)^(n+1)*(2^(

(2^(n^2))/n!的极限不是零,所以,此级数发散.理由:ln(2^(n^2))/n!=n^2ln2-lnn!>n^2ln2-lnn^n=n^2ln2-nlnn=n(nln2-lnn)>n(n-l

判断级数∑n^-(1+1/n) 的敛散性?

设an=n^-(1+1/n),则n趋于无穷时,limn*an=n^-(1/n)=1,根据正项级数的极限审敛法,该级数发散.

判断级数 ∑ (∝ n=1) 3^n*n!/n^n的敛散性

比值法,U(n+1)/Un=3/[(1+1/n)^n]→3/e>1(n→∞),所以级数发散

怎么判断级数N!/(N^N)的敛散性

后项比前项=[(N+1)!/((N+1)^(N+1)]/[N!/(N^N)]=1/(1+1/N)^N趋于1/e

判断级数∑1/√(2+n³)的敛散性

1/√(2+n³)<1/n^(3/2),而级数∑1/n^(3/2)收敛,故由比较判别法,级数∑1/√(2+n³)收敛.再问:不好意思,请问级数∑1/n^(3/2)为什么收敛?麻烦了

判断级数∑1/(n²*㏑n)的敛散性!

因为【1/(n²*㏑n)】÷【1/n²】=1/lnn趋向于0而Σ1/(n²)收敛,所以由比较审敛法,知原级数收敛.再问:【1/(n²*㏑n)】÷【1/n

级数(n^(n+1/n))/((n+1/n)^n)的敛散性的怎么判断

limit{n->∞}(n^(n+1/n))/((n+1/n)^n)=limit{n->∞}[n/(n+1/n)]^n*n*(1/n)=limit{n->∞}[1/(1+1/n^2)]^n*limit

判断级数∑2^n /n^n (n=1到∞)的敛散性

根据比值判断法,(n+1)项/n项以n趋近于无穷大的比值为1,所以级数可能收敛也可能发散

判断级数∞ E n=1 3^n + n /4^n的敛散性

∑(3^n+n)/4^n=∑[(3/4)^n+n/4^n]两个收敛级数的和,收敛.

判断级数的敛散性∑ (∞,n=1)2^n * /n^n

只需要看后一项与前一项比值【2^n*n!/n^n】/【2^(n-1)*(n-1)!/(n-1)^(n-1)】=2n*(n-1)^(n-1)/n^n=2(n-1)^(n-1)/n^(n-1)=2【(n-

判断级数∑(n!/n^n)的敛散性

本题直接利用达朗贝尔判别法可得级数收敛

判断级数(e^n)*(n!)/(n^n)的敛散性

比值法: 发散我发现网上已经有很多回答了http://iask.sina.com.cn/b/14827620.htmlhttp://learning.wenda.sogou.com/ques

判断级数 3^n*n!/n^n 的敛散性

对于这个级数,首先观察进行初步估计;可以尝试采用夹逼准则,发现没有办法计算.我们发现用an+1/an可以消去很多项,使得计算成为可能.那我们便作商,进行比值判别法.an+1/an=3[n/(n+1)]

判断级数敛散性∑(-1)^n

级数发散,当n趋于无穷时级数∑(-1)^n无限次的依次重复为-1和0,不是一个确定的值,因此级数发散.另外根据交错级数的审敛法则也可以判断级数不收敛.

微积分问题:判断下列级数的敛散性.∑(n=1→∞)(-1)^(n-1)*(1-cos(a/根号n))

加绝对值变成∑(n=1→∞)(1-cos(a/根号n))用比较判别法的极限形式,n-->无穷大lim(1-cos(a/根号n))/(1/n^2)=lim(1/2(a/n)^2)/(1/n^2)=1/2