利用三重积分计算z=x2 y2及z=2-x2-y2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:17:53
再问:谢谢(不过最后一步写错了,5/2还要乘2π/3
仅供参考再问:答案不对…>.
这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用
设所围成的立体为Ω,则Ω的上半曲面是抛物面,下半曲面是开口向上的锥面,因此,宜用柱面坐标计算,又由z=6−x2−y2z=x2+y2⇒交线x2+y2=4z=2,Dxy:x2+y2≤4,而r≤z≤6-r2
计算到下面部分去了.以z=z截立体,则1
再答:再答:有不懂之处请追问,望采纳。
z=√(5-x^2-y^2)与x^2+y^2=4z,联立解,消去z,得x^2+y^2=4,即交线在xOy平面上的投影.V=∫∫∫dv=∫dt∫rdr∫dz=π∫r[√(5-r^2)-r^2/4]dr=
首先你要知道这个积分区域是什么:2z=x^2+y^2,旋转抛物面,(x^2+y^2)^2=x^2-y^2柱面,Z=0,不用说.(x^2+y^2)^2=x^2-y^2在极坐标下是r^2=cos2θ,由对
三次积分自己算再问:截面法呢,主要是截面法亲~
原式=∫dz∫dy∫xdx=∫dz∫(1/2)(1-y-z)^2dy=(1/2)∫dz∫[(1-z)^2-2(1-z)y+y^2]dy=(1/6)∫(1-z)^3*dz=(1/6)∫(1-3z+3z^
Ω为三个坐标面及平面x/2+y+Z=1所围成的区域,原式=∫zdz∫dy∫dx=∫zdz∫2(1-y-z)dy=∫z[2(1-z)^-(1-z)^]dz=∫(z-2z^+z^3)dz=[(1/2)z^
原式=∫xdx∫dy∫dz=∫xdx∫(1-x-2y)dy=∫x[(1-x)²/4]dx=1/4∫(x-2x²+x³)dx=(1/2-2/3+1/4)/4=1/48.
就用直角坐标计算再答:再问:∫(0,1)xdx∫(0,1-x)dy∫(0,1-x-y)dz我这么算怎么我算到1/8的?再答:不是被积函数是xy么再问:∫(0,1)xdx∫(0,1-x)ydy∫(0,1
积分限定的是正确的,不是正解.∫∫∫zdv=∫(0,1)zπz^2dz+∫(1,√2)zπ(2-z^2)dz=π/4+π[z^2-(1/4)z^4](1,√2)=π/4+π[(2-1)-(1-1/4)
设x=rcos(t),y=rsin(t),r>0,0z}=PI*S_{z:0->1}ln(1+z^2)dz=PI*{[zln(1+z^2)]_{z:0->1}-S_{z:0->1}2z^2dz/(1+
坐标变换:x=rsinacosb,y=rsinasinb,z=rcosa,0