利用二元logistic回归把你要合并的变量重新拟合一个新的变量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:18:52
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等.例如,想探讨胃癌发生的危险因素,可以选择两组人
logistic回归主要用于危险因素探索.因变量y为二分类或多分类变量,自变量既可以为分类变量,也可以为连续变量.比如,探索胃癌发生的危险因素,胃癌作为因变量,分为两类,“是”或“否”.危险因素可以有
SPSS仅在线性回归中设置了共线性检验,而在logistic回归中并未设置共线性检验,我的理解是没有必要,因此不需要考虑这个问题.对于分类自变量,唯一需要注意的不要产生哑变量陷阱而造成共线性,只要你不
用SPSS作Logistic回归分析,自变量较多,先用单因素分析对自变量进行筛选,得出回归方程,主要是看各个自变量的假设检验结果,和系数.两个自变量都有统计学
logistic回归对自变量类型一般不做规定,但它要求自变量与logitp之间应符合线性关系.当自变量为分类变量时,可不必考虑线性关系,但当自变量为连续型变量时,则需要检验二者之间的线性关系是否成立.
就是系数加上变量这么来写啊,比如0.196VAR00002-0.152VAR00003-.我替别人做这类的数据分析蛮多的
logistic回归模型,主要是用来对多因素影响的事件进行概率预测,它是普通多元线性回归模型的进一步扩展,logistic模型是非线性模型.比如说我们曾经做过的土地利用评价,就分别用多元线性回归模型和
要大于等于三个水平的分类变量才有必要生成哑变量的,只有两个水平的话不用.logi回归的因变量就是只能俩水平:0和1的.我一般生成哑变量是直接conpute的.简单说分类指的是一个变量在测量中的属性,就
把196个根据你们制定的标准,分为1和2,也就是全用1和2来表示.然后输进去,其他的都作为自变量.也都是按1和2两类来分.SPSS设计的不太人性化,挺简单的问题,弄的很复杂.网上有个中文教程,是PDF
这个问题我想教科书上都有吧建议你看看 姜启源 的《数学建模》或者你可以用google学术,收索一些相关文献看看既然做数据分析你应该也会用到SPSS,推荐看看这篇博文吧
是否有统计学意义主要看sig如果这个值小于0.05那么就是相关的,在此基础上看第一列B值,负号代表负相关.你的例子中性别不对因变量产生影响.另外logistic回归中Exp(B)值即为OR
额,本来看到这个问题很久,不想冒泡,因为做这种东西没有技术含量.但是出来冒泡的原因是:楼上的不要误导人,这么多变量还是线性回归?你是学统计的吗?何况不可能没有多重共线问题的.自己的建议:使用因子分析或
基因多态性是几分类变量,如果是超过两分类的,需要先设置哑变量,其他自变量如果有的分类变量超过了两分类都需要设置哑变量,连续性变量和两分类变量可以直接使用.二型糖尿病的发病风险因变量是怎么赋值的,是否是
p=0.06大于0.05说明这个自变量对因变量的影响不显著,而B的值则是回归系数,跟线性回归一样,如果你要写回归方程,则自变量的系数就是Bexp(B)则是根据B值计算得来的,可以理解为风险率,如果你的
logit回归的结果一般不去太在意方程.数据发我,我看看再问:大哥(姐),做财务预警模型要有ST公司,我想问一下找得到30或35家2010年被首次ST的公司吗?
这个问题可以这样回答,自变量在两个显著性框中的显著性不一样,或者说在一个里面显著,在另一个不显著,这样的可以不解释.
给个邮箱再问:929451106@qq.com再答:已发,看懂了吗再问:太复杂了再答:你用的是中文版还是英文版??再问:中文版的,不过我们要解决的问题好像和你给的那个有区别再答:主要是什么问题?再问:
你选择的因变量是不是只用一个值,要么都是1,要么都是0,你检查下
你先找到自变量和因变量,就可以直接利用SPSS中的曲线回归中logistic的模型拟合就可以了
很高深的东西,给你个参考.实用现代统计分析方法与spss应用Spss电脑实验-第八节(3)两分类Logistic回归分析