利用二重积分求由球面与锥面所围成的立体体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:04:01
利用二重积分求由球面与锥面所围成的立体体积
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=

再问:谢谢(不过最后一步写错了,5/2还要乘2π/3

已知锥面方程怎样求锥面母线与z轴夹角?

原点(0,0,0),取锥面上任意一点(1,1,z),算出z=根2,计算其与z轴上的(0,0,1)向量夹角即可.

利用柱面坐标系画出锥面和球面上半部分构成的图形(mathematica)

RegionPlot3D[z>=3*Sqrt[x^2+y^2]&&(*与球面改了球心位置,否则空图!,自己按需要再改参数*)x^2+y^2+(z-3)^235,PlotRange->All]

求锥面z= √x^2+y^ 2与半球面 z= √ 1-x^2-y^ 2所围成的立体的体积

两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d

利用二重积分求y=x+1与y^2=1-x所围成平面区域的面积

直线y=x+1与抛物线y^2=1-x的交点满足这两个方程:y=x+1,y^2=1-x解得两个交点为:(0,1),(-3,-2).所以,直线y=x+1与抛物线y^2=1-x围成的区域为D:-2

利用二重积分计算由抛物面z=10-3x∧2-3y∧2与平面z=4所围立体的体积

z=10-3x^2-3y^2与z=4联立,消去z,得D:x^2+y^2=2.V=∫∫(10-3x^2-3y^2-4)dxdy=3∫dt∫

球面x^2+y^2+z^2=50被锥面x^2+y^2=z^2所截曲线方程是什么?怎么求?

解这两个方程所组成的方程组即可.两式相减:z²=50-z²,得:z=5或-5故x²+y²=25因此曲线是两个半径为5的圆.

由锥面z=√(x^2+y^2)和半球面z= √ 1-x^2-y^ 2所围成的立体的体积 用二重积分做

这题本应就是用到三重积分的思想,二重积分只是三重积分的简化而已

利用二重积分求由平面x=0,y=0,z=1,x+y=1及z=1+x+y所围成的立体的体积

我认为应该是5/6啊就是那个积分区间的选择啊我认为应该把曲线投影到xoy平面上啊就是你说的z=0的平面上啊这是我自己的看法啊

利用球坐标求积分x2+y2+z2,其中区域是锥面z=x2+y2开根号与球面x2+y2+z2=r2所

球坐标变换,然后得到:原积分=∫(0到2∏)dΘ∫(0到П)sinφdφ∫(0到1)r^4dr=2П*2*(1/5)=4П/5.

∫∫∫(x+y+z)∧2dV,其中Ω由锥面z=√(x∧2+y∧2)和球面x∧2+y∧2+z∧2=4所围立体,

用球坐标算:原式=∫[0,2π]dθ∫[0,π/4]dφ∫[0,2](sinφcosθ+sinφsinθ+cosφ)^2*ρ^4sinφdρ=32(2-√2)π/5

高数二重积分题 求下列给定区域体积由XOY平面与z=2-x^2-y^2所围成的有界区域

二重积分再问:请问能否解释下你的解题思路我不是很会再答:第一个等号:二重积分计算体积;第二个等号:二重积分坐标变换;第三个等号:二重积分化累次积分;第四个等号:。。。

一道高数题:求由曲面Z=X的平方 2Y的平方及Z=6-2X的平方-Y的平方所围成的立体的体积.利用二重积分做!

两曲面的交线在xy坐标面上的投影曲线是x^2+y^2=2,所以整个立体在xy面上的投影区域是D:x^2+y^2≤2体积V=∫∫(D)[(6-2x^2-y^2)-(x^2+2y^2)]dxdy用极坐标=

利用二重积分求体积利用二重积分求z=9-x^2-4y^2与xy平面围成的立体的体积,

楼上错了z=9-x^2-4y^2与xy平面围成的立体即z=9-x^2-4y^2>=0x^2+4y^2

利用二重积分计算由y^2=2x,y=x所围成的闭区域的面积

∫(0~2)dy∫(y^2/2~y)dx=∫(0~2)(y-y^2/2)dy=2/3

求锥面z=√ (x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影.

/>要求锥面z=√(x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影可以分开求锥面z=√(x^2+y^2)在xoz面的投影,和柱面z^2=2x在xoz面的投影,这两个投影重叠部分即为锥面z=