利用夹逼准则求极限 Xn=1 √n^2 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:53:51
利用夹逼准则求极限 Xn=1 √n^2 1
利用单调有界必有极限的准则证数列的极限存在并求极限设x1>0且xn+1=1/2(xn

题目是不是搞错了,应该是x1>0且xn+1=1/2(xn+1/xn)如果是,那么由均值不等式知,xn>=1,有下限1,又由于xn+1/xn=1/2(1+1/xn^2)=1,所以,1/xn^20且xn+

数列极限的夹逼准则求极限lim[1/n^2+1/(n+1)^2+.+1/(n+n)^2] (n→∞) 设Xn=1/n^2

把xn的分母全部放大成(n+n)^2,相加得到yn,因为是分母放大,所以整体缩小把xn的分母全部缩小为n^2,相加得到xn,因为是分母缩小,所以整体放大

设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.

首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数).(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0.这个是利用下面不等式的基

利用单调有界收敛准则,证明:数列x1=2^0.5 ,x(n+1)=(2+xn)^0.5 (n=1,2, .)存在极限,并

由归纳法x1=√2<2,设xn<2,则x(n+1)=√2+xn<√(2+2)=2,∴0<xn<2,xn有界.∵x(n+1)=√(2+xn)>√(2xn)=√2*√xn>√xn*√xn=xn,∴xn有界

利用单调有界收敛准则,证明:数列X1=1/2,X(n+1)=(1+Xn*2)/2,(n=1.2.)存在极限

证明:(一)由x1=1/2,x(n+1)=(xn²+1)/2.可得x1=1/2,x2=5/8.∴x1<x2.又2x(n+1)=xn²+1≥2xn.===>x(n+1)≥xn.∴{x

X1=√2,Xn+1=√2xn,n=1,2.用收敛准则证明数列有极限并求其极限

写成指数函数形式,2为底,指数是单增的,等比级数求和,可求极限,利用指数函数连续性,或用归纳法证xn单增且有上界,极限存在,对公式两边Xn+1=√2xn求极限

求极限lim(n→无穷大)sin{[根号(n^2+1)]*π}(要求运用“夹逼准则”来解,老师给的提示是利用X>=sin

√n²<√(n²+1)<√[n²+1+1/(4n²)]即n<√(n²+1)<n+1/(2n)lim(n→∞)sin(nπ)=0lim(n→∞)sin{

利用夹逼准则证明第二个重要极限

再答:再问:不是这个再答:书上有啊再问:再答:再答:再答:再答:再问:太感谢了再问:这是什么教材再答:同济第六版再答:兄台我感觉你一定是学霸再问:我们学校是自己编的书再问:没有过程再问:什么都不会的学

如何证明?利用夹逼准则证明lim(n趋于正无穷) n/a^n=0(a>1);

若a=0,结论不言而喻,所以只讨论a≠0.【方法一】存在N>2|a|,记M=|a|^N/N!,当n>N时,|a|^n/n!=M*[|a|/(N+1)]*[|a|/(N+2)]*……*[|a|/(n)]

利用夹逼准则证明极限 

解答如图再答:再问:不对啊再答:哪儿不对再问:对的

利用极限夹逼准则证明下列极限:

当n足够大,使得π/√(n^2+1)再问:用了limsinx→x的话x应该→0啊,这里x→无穷大了不是不能用了?再答:x=π/√(n^2+1)或者π/√(n^2+n)→0啊再问:噢!有道理!

利用极限夹逼准则证明下列极限

用极限的夹逼定理,左边缩小成n×最后一项,右边放大成n×第一项,两个极限都是1,即得极限为1..sorry,电脑不太好打

高数题 夹逼准则 求极限

再问:还没证单调?怎么说明有极限?再答:再答:在草稿纸上写漏了。再问:谢谢你的解答!归纳法的思路用得非常好,感谢牛人。

利用夹逼准则求极限RT

应该是用“单调有界准则”吧如图

夹逼准则求极限

答案见图片

用极限准则证明数列x1=√3,xn+1=√(3+xn) (n=1,2,...)的极限存在

应用单调有界准则①先证单调性(应用数学归纳法)②再证有界性(应用数学归纳法)所以数列单调递增且有上界,于是数列的极限存在.敬请及时采纳,回到你的提问页,点击我的回答,然后右上角点击“评价”,然后就可以