利用矩阵的初等行变换解方程组x1 x2 x3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:21:43
3-2r1,r1-2r2,r4-r201-111201-302-1r3-r1,r4-2r101-111200-2001r3+2r401-1112000001交换行11201-1001000秩=3
(11-22-31)等价(11-20-55)等价(11-201-1)等价(10-101-1)x1=x3x2=x3所以通解为x=c(1,1,1)T再问:谢谢!你能帮我看下http://zhidao.ba
这时不能把λ-1除掉,均变为1;不行的话,是因为λ-1不能确定是否为零;那如果这个矩阵除了第一个元素为零,其他的都为同一个数字,这样就可以除掉,使他们为1了.(第一行的行向量乘以未知向量x,可得一个方
{1,1,2,1,0,0},{1,2,1,0,1,0},{2,6,2,0,0,1}{1,1,2,1,0,0},{0,1,-1,-1,1,0},{0,3,-1,-1,-1,1}{1,0,3,2,-1,0
1.(A,E)=5311001-3-2010-521001r1-r3,r2+2r3101010-1-910012-521001r2-r1,r3-2r1101010-1-1900-113-1501-20
m个n维列向量α1,α2,……,αm,如果m>n.{α1,α2,……,αm}必然线性相关.当m≤n时.对n行m列矩阵(α1,α2,……,αm),进行行初等变换.目标是有r列.其前r行构成的子式变成r阶
答案一定唯一.
注意方法,从左到右逐列处理(A,E)=3-20-11000022101001-2-3-2001001210001r1-3r3049510-30022101001-2-3-2001001210001r1
这个方法不好讲,只能以例子来说明吧,你看一下行阶梯型矩阵,其形式是:从上往下,与每一行第一个非零元素同列的、位于这个元素下方(如果下方有元素的话)的元素都是0;行最简型矩阵,其形式是:从上往下,每一行
设A={{3,2,-1,-3,-2}{2,-1,3,1,-3}{7,0,5,-1,-8}}由于阶梯型矩阵的秩就是其非零行(或列)的个数,而初等行变换不改变矩阵的秩,所以r(A)=r(P)=3.可以参考
矩阵初等行变换后,不改变的是矩阵的秩,矩阵的特征值是要改变的
再答:望采纳再问:利用初等变换法求
真不是一般的难算 都是书上的啊 简单的 好好搞
初等变换就是变换矩阵中元素的一些方法,比如其中两行相加,相减,或称某一行乘以一个常数,矩阵的乘法乘以一个数就是你说的矩阵所有元素乘以这个常数就是乘法的结果你可能觉得乘法很直观一个矩阵乘以一个数字等于了
因为|A|0∴A可逆∴AX=A+2XAX-2X=A(A-2E)X=A∵A-2E=301200110-020014002=1011-10012同样|A-2E|0∴A-2E也是可逆的∴X=A(A-2E)^
11-20701-1030001-30001-3
AP,A右乘初等矩阵P,相当于对A实施一次相应的初等列变换:第1列的3倍加到第2列AP=3-22-100048再问:然后呢,再问:目的是不是把它变成有单位矩阵的那种再问:我知道了再答:OK
3-20-11000022101001-2-3-2001001210001r1-3r3049510-30022101001-2-3-2001001210001r1-2r2,r3+r2,r2-2r400