利用线段垂直平分线定理及其逆定理证明以下命题,如图
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:08:59
到线段两个端点距离相等的点在线段的垂直平分线上
无数条可以存在在空间里
dx,就是说明是对x求积分的式子,要从几何意义比较好明白的,只用计算的话可先不管.dy,就是对y积分,dz,就是对z求积分,df(x),就是对f(x)求积分...而导数式子dy/dx,也是指明对x求导
垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等.逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
首先,童鞋,你图中的c跟d是不是标反了?下面(以你文字叙述为准)证明:连接bc,因为ab=ac,因此a在bc的垂直平分线上(逆定理)因为db=dc,因此d在bc的垂直平分线上(逆定理)因此线段ad是b
解题思路:利用线段的垂直平分线的性质求解。解题过程:解:∵DE是AC的垂直平分线∴AD=CD,AC=2AE=2×3=6(cm)∵AB+BD+AD=13cm∴AB+BD+CD=13cm∴AB+BC=13
险段垂直平分线上的点到线段两端点的距离相等
线段垂直平分线定理是,在平面内,线段垂直平分线上的点到线段两端的距离相等.那么逆定理就是,在平面内,到线段两端距离相等的点在线段垂直平分线上.
对,因为两点确定一条直线.
角平分的性质定理:角平分线上的点到角两边的距离相等平行四边形的性质及其判定:对边平行且相等,对角线互相平分,对角相等.矩形的性质及其判定:性质:四个角都是直角,对角线相等.判定:三个角是直角的四边形是
(1)若点在线段上,则这一点就是线段的中点,那么就有线段中点到线段两个端点距离相等的结论(中线定义)(2)若这个点不在直线上,那么分别连接这点与两个端点,这样,这点到线段的距离为公共线段,并切过此点与
题设是(线段垂直平分线上的点),结论是(到线段两端点距离相等)2、三角形三边垂直平分线的交点到(三角形三个顶点)的距离相等
性质:垂直平分线上任一点,到线段两端点距离相等.判定:1:证两条线垂直和交点是一条线段的中点2:找两个到这条线段两端点距离相等的点,这两点的连线垂直平分线段
解题思路:全等、中垂线、等腰三角形解题过程:附件最终答案:略
对线段垂直且平分
证明:连结BC,交AD于O在△ABD和△ACD中,AB=ACBD=DCAD公用,∴△ABD≌△ACD∴∠BAD=∠CAD∴AD是∠A的平分线在等腰△ABC中,AD是角平分线,所以也是BC上的高,也是底
到线段两端点距离相等的点在线段的垂直平分线上
到线段两端点距离相等的点在线段的垂直平分线上
和一条线段两个端点距离相等的点,在这条线段垂直平分线上