副对角线上是b1,b2,-bn,其他都为零的行列式的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:04:36
副对角线上是b1,b2,-bn,其他都为零的行列式的值
an是等差数列,bn 是等比数列,a1+b1=3,a2+b2=7,a3+b3=15,a4+b4=35,求an+bn=?

a1+b1=3(1)a2+b2=7(2)a3+b3=15(3)a4+b4=35(4)(1)+(3)-(2)*2得到b1*(q²-2q+1)=4(5)(2)+(4)-(3)*2得到b2*(q&

设数列{An}{Bn} 满足A1=B1= A2=B2=6 A3=B3=5且{An+1-An}是等差数列{Bn+1-Bn}

解题思路:考查了等差数列、等比数列的通项公式,以及二次函数的最值解题过程:

设 {an }是等差数列,{bn } =(1/2 )的an次方且b1 +b2+b3=21/8,b1*b1*b3=1/8,

设公差为d(1/2)^(a1+a2+a3)=1/8a1+a2+a3=3a2=1b2=1/2b1+b2+b3=21/8(1/2)^(1-d)+(1/2)^(1+d)=17/8解得d=2,a1=-1∴an

已知a1,a2,…,an;b1,b2,…,bn(n是正整数),令L1=b1+b2+…+bn,L2=b2+b3+…+bn,

a1b1+a2b2+…+anbn=a1L1+c2L2+c3L3+…+ckLk+…+cnLn=c1L1+c2L2+c3L3+…+ckLk+…+cnLn=c1(b1+b2+…+bn)+c2(b2+b3+…

已知数列{bn}是等差数列,b1=1,b1+b2+...+b10=100.(1)求数列{bn}的通项公式bn; (2)设

(1)Bn=3n-2b1+b2+b3+.+b10=10b1+d+2d+.+9d=10+45d=145则d=3因为Bn=b1+(n-1)*d所以Bn=3n-2不知道为什么只能输入99个字,请你再追问一下

已知数列{bn}是等差数列,b1=1,b1+b2+...+bn=145

题目错了,由b1=1,b1+b2+...+bn=145,求不出bn(2){an}=loga(1+1/bn)=loga(3n-1/3n-2)=(loga3n-1)-(loga3n-2),就可以求出sn了

设{an}是等差数列,bn={1/2}^an,已知b1+b2+b3=21/8,b1b2b3=1/8,证明{bn}是等比数

(1/2)^a1+(1/2)^a2+(1/2)a^3=21/8(1/2)^a1*(1/2)^a2*(1/2)^a3=1/8(1/2)^(a1+a2+a3)=1/8a2=1a1=1或a1=4a3=4或1

已知{an}是等比数列,a1=2,a4=54;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3.

(1)设{an}的公比为q,∵a1=2,a4=54,∴q=3,∴an=2•3n−1,Sn=2(1−3n)1−3=3n−1;  (2)设{bn}的公差为d,则4b1+6d=27-1=

矩阵|a1+b1 a1+b2.a1+bn;a2+b1 a2+b2.a2+bn;.an+b1 an+b2.an+bn|等于

在n大于等于3时,这个行列式为0,可用性质化简计算.经济数学团队帮你解答,请及时评价.再答:请用追问方式提问,否则我无法在网页端回答。不同的问题最好另开新提问。

bn=2/(n^2+n) 求证b1+b2+.+bn

n=2/(n^2+n)=2[1/n-1/(n+1)]b1+b2+.+bn=2(1-1/2+1/2-1/3+...1/n-1/(n+1))=2(1-1/(1+n))=2n/(n+1)因为n/(n+1)大

等差数列{an}中,a1=2,公差是正整数,等比数列{bn}中,b1=a1,b2=a2.

an=2+(n-1)dq=a2/a1=(2+d)/2=1+d/2bn=2q^(n-1)=2(1+d/2)^(n-1)bn=ak因为an为整数,若bn都是an的项,所以bn也须为整数,d=2m,ak=2

已知{an}是等比数列,a1=2,a3=18;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>2

(1)设{an}的公比为q,由a3=a1q2得q2=a3a1=9,q=±3.当q=-3时,a1+a2+a3=2-6+18=14<20,这与a1+a2+a3>20矛盾,故舍去.当q=3时,a1+a2+a

已知等差数列{an}中,a1=1,a7=4,数列{bn}是等比数列,b1=6,b2=a3.

a7=a1+6d得d=1/2得an=1+(n-1)1/2a26=1+25/2=13.5a3=2q=b2/b1=2/6=1/3bn=b1*q^(n-1)=6/[3^(n-1)]13.5bn<1得n-1>

设{an}是等差数列,bn=1/2^an,已知b1+b2+b3=21/8,b1*b2*b3=1/8,求等差数列的通项an

设bn的公比为q,首项为bb+bq+bq^2=21/8b^3q^3=1/8所以bq=1/2解得b=1/8,q=4b=2,q=1/4当b=1/8,q=4,则d=-2,a1=3,an=5-2n当b=2,q

已知《an>是公差大于0的等差数列,满足a3a6=55 a2+a7=16 数列b1,b2-b2,b3-b2.bn-b(n

(1)a2+a7=a3+a6=16,又a3a6=55于是a3=5,a6=11公差为d=(11-5)/3=2首项为a1=1因此an=1+(n-1)*2=2n-1(2)bn-b(n-1)=b1*(1/3)

设数列an是等差数列,bn=二分之一的an次方,又b1+b2+b3=8分之21,b1×b2×b3=8分之一,求通项an!

∵bn=(1/2)^an∴b1b2b3=(1/2)^(a1+a2+a3)=1/8∴a1+a2+a3=3又∵(an)是等差數列∴a1+a3=2a2∴3a2=3a2=1∴b2=(1/2)^1=1/2又∵b