动点P到两圆x^2 y^2-2=0与x^2 y^2-8x 10=0的切线长相等

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:55:00
动点P到两圆x^2 y^2-2=0与x^2 y^2-8x 10=0的切线长相等
抛物线Y=X∧2,动点P在直线Y=X-2上动,过p点做抛物线切线交与AB,求△ABP的重心轨迹,

思路:设P(t,t-2),设切点(x0,x0^2),由切线方程将x用t表示,得到A,B的坐标,从而得到重心坐标,从参数方程解出常规方程切线方程y-x0^2=2x0(x-x0)解得x0=t±√(t^2-

已知点p(x,y)是圆x2+y2=2y上的动点,求y\(x+2)的取值范围

x2+y2=2y化成标准方程x²+(y-1)²=1,圆心C(0,1),半径为1设y/(x+2)=k得直线l:kx-y+2k=0∴l与圆x²+(y-1)²=1有公

点P(X,Y)是圆X2+Y2=2Y上的动点,若x+y+a≥0恒成立,求a范围

X2+Y2=2Yx^2+(y-1)^2=1圆心(0,1)半径R=1参数方程:x=cost,y=1+sintx+y+a=cost+sint+1+a=√2sin(t+45°)+1+a>=0-√2+1+a>

已知P(x,y)是圆C:x^2+y^2-2y=0上的动点

x^2+(y-1)^2=1所以可以设x=sina,y=1+cosa所以2x+y=2sina+1+cosa=√5*sin(a+b)+1其中b满足cosb=2/√5,sinb=1/√5因为-1

已知点P(x,y)是圆x^2+y^2-6x-4y+12=0上的动点,求x+y的最值

x^2+y^2-6x-4y+12=0(x-3)^2+(y-2)^2=1令x-3=cosa,y-2=sinax+y=5+cosa+sina=5+√2sin(a+π/4)x+y最大值5+√2,最小值5-√

答出来追加200分 1是否存在一次函数 y=kx+b 使得动点P(X,Y)在其图象上运动时,动点Q(X+2Y,X-Y)也

1、答:能满足条件的一次函数是不存在的.因为:假如P(x,y)和Q(x+2y,x-y)在一次函数y=kx+b上,那么将P、Q两点的坐标代人一次函数式中,可求得k、b的值.即有关于求K、b的方程组y=k

动点P(x,y)满足5倍根号下(x+1)平方与(y+2)平方之和=|3x+4y|,则动点轨迹是什么

因为将5除到右边,方程即为:根号{(X+1)的平方+(Y+2)的平方}=|3x+4y|/5方程左边表示点P(x,y)到一定点(-1,-2)的距离,方程右边表示点P(x,y)到一定直线3X+4Y=0的距

设P是抛物线Y^2=4X上的一个动点

易知,抛物线y^2=4x的焦点F(1,0),其准线是x=-1.点P到准线的距离d=|PF|.又点A(-1,1))在准线上,连结点AF,交抛物线的交点即是点P.点易知,d+|PA|=|AF|.===>最

动点P(x,y)在圆上x^2+(y-1)^2=1,求(y-1)/(x-2)的最大值和2x+y的最小值

圆的参数方程x=cosθy=sinθ+1(y-1)/(x-2)=k你先画个图,就知道直线y-1=k(x-2)过点(2,1)当p点在圆下和圆相切时的直线,k有最大值此时有圆心(0,1)到直线y-1=k(

已知P(t,t),点M是圆x^2+(y-1)^2=1/4上的动点,点N是圆(x-2)^2+y^2=1/4上的动点,则|p

点P在直线y=x上 点到圆上一点的距离,最小和最大都在点与圆心的连线上,靠近点P的为最近点,圆心另一端的为最远点. 因此,当PN最大而PM最小时,|pn| - 

设点p(x,y)是椭圆x^2/2+y^2=1上的动点,则y-x最大值是多少?

设y-x=t,则可以看成一条直线相当于直线与椭圆有公共点,求出t的范围,取最大值即可与椭圆方程x^2/2+y^2=1联立∴x²/2+(x+t)²=1∴x²+2(x+t)&

A为y轴上异于原点O的定点,过动点P作x轴的垂线交x轴于点B,动点P满足|PA+PO|=2|PB|,则点P的轨迹为(

设P(x,y),A(0,a),则∵动点P满足|PA+PO|=2|PB|,∴|(-x,a-y)+(-x,-y)|=2|(0,-y)|,∴|(-2x,a-2y)|=|(0,-2y)|,∴4x2+(a-2y

已知P(x,y)是椭圆x^2/25+y^2/16=1上的一个动点,求4x/5+3Y/4的最大值

令x=5cosay²/16=1-cos²a=sin²a所以y=4sina所以4x/5+3y/4=4cosa+3sina=5sin(a+z)其中tanz=4/3所以最大值=

动点P过B(2,0)且与圆(x+2)^2+y^2=1外切,则动圆圆心P的轨迹方程为

圆心A(-2,0),半径1,显然|PA|=|PB|+1,|PA|-|PB|=1按定义,这是双曲线,|PA|>|PB|,这是双曲线的右支c=2,a=1/2b²=c²-a²=

设P(x,y)是椭圆2x方+3y方=12的一个动点,求x+2y得取值范围

2x方+3y方=12x^2/6+y^2/4=1设x=根号6cosa,y=2sinax+2y=根号6cosa+4sina=根号(6+16)sin(a+m)又-1

已知点A(0.-2),B(0.4)动点p(x.y),满足向量PA*向量PB=y2-8

向量PA=(-x,-2-y)向量PB=(-x,4-y)向量积等于向量的数乘.所以向量PA*向量PB=x^2+(y^2-2y-8)因此x^2+y^2-2y-8=y^2-8所以C的解析式为x^2=2y+8

如图,动点P在函数y=1/2x(x>0)的图像

B点坐标为(1,0),A为(0,1)设动点P坐标为(Xo,1/2Xo),(0