动点P到两圆x^2 y^2-2=0与x^2 y^2-8x 10=0的切线长相等
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:55:00
思路:设P(t,t-2),设切点(x0,x0^2),由切线方程将x用t表示,得到A,B的坐标,从而得到重心坐标,从参数方程解出常规方程切线方程y-x0^2=2x0(x-x0)解得x0=t±√(t^2-
x2+y2=2y化成标准方程x²+(y-1)²=1,圆心C(0,1),半径为1设y/(x+2)=k得直线l:kx-y+2k=0∴l与圆x²+(y-1)²=1有公
X2+Y2=2Yx^2+(y-1)^2=1圆心(0,1)半径R=1参数方程:x=cost,y=1+sintx+y+a=cost+sint+1+a=√2sin(t+45°)+1+a>=0-√2+1+a>
x^2+(y-1)^2=1所以可以设x=sina,y=1+cosa所以2x+y=2sina+1+cosa=√5*sin(a+b)+1其中b满足cosb=2/√5,sinb=1/√5因为-1
x^2+y^2-6x-4y+12=0(x-3)^2+(y-2)^2=1令x-3=cosa,y-2=sinax+y=5+cosa+sina=5+√2sin(a+π/4)x+y最大值5+√2,最小值5-√
1、答:能满足条件的一次函数是不存在的.因为:假如P(x,y)和Q(x+2y,x-y)在一次函数y=kx+b上,那么将P、Q两点的坐标代人一次函数式中,可求得k、b的值.即有关于求K、b的方程组y=k
因为将5除到右边,方程即为:根号{(X+1)的平方+(Y+2)的平方}=|3x+4y|/5方程左边表示点P(x,y)到一定点(-1,-2)的距离,方程右边表示点P(x,y)到一定直线3X+4Y=0的距
易知,抛物线y^2=4x的焦点F(1,0),其准线是x=-1.点P到准线的距离d=|PF|.又点A(-1,1))在准线上,连结点AF,交抛物线的交点即是点P.点易知,d+|PA|=|AF|.===>最
超级课堂,新思维上有
圆的参数方程x=cosθy=sinθ+1(y-1)/(x-2)=k你先画个图,就知道直线y-1=k(x-2)过点(2,1)当p点在圆下和圆相切时的直线,k有最大值此时有圆心(0,1)到直线y-1=k(
点P在直线y=x上 点到圆上一点的距离,最小和最大都在点与圆心的连线上,靠近点P的为最近点,圆心另一端的为最远点. 因此,当PN最大而PM最小时,|pn| -
设y-x=t,则可以看成一条直线相当于直线与椭圆有公共点,求出t的范围,取最大值即可与椭圆方程x^2/2+y^2=1联立∴x²/2+(x+t)²=1∴x²+2(x+t)&
设P(x,y),A(0,a),则∵动点P满足|PA+PO|=2|PB|,∴|(-x,a-y)+(-x,-y)|=2|(0,-y)|,∴|(-2x,a-2y)|=|(0,-2y)|,∴4x2+(a-2y
令x=5cosay²/16=1-cos²a=sin²a所以y=4sina所以4x/5+3y/4=4cosa+3sina=5sin(a+z)其中tanz=4/3所以最大值=
圆心A(-2,0),半径1,显然|PA|=|PB|+1,|PA|-|PB|=1按定义,这是双曲线,|PA|>|PB|,这是双曲线的右支c=2,a=1/2b²=c²-a²=
2x方+3y方=12x^2/6+y^2/4=1设x=根号6cosa,y=2sinax+2y=根号6cosa+4sina=根号(6+16)sin(a+m)又-1
向量PA=(-x,-2-y)向量PB=(-x,4-y)向量积等于向量的数乘.所以向量PA*向量PB=x^2+(y^2-2y-8)因此x^2+y^2-2y-8=y^2-8所以C的解析式为x^2=2y+8
B点坐标为(1,0),A为(0,1)设动点P坐标为(Xo,1/2Xo),(0
x^2+y^2=2(y>=0)P(根号2cosa,根号2sina)0