24.已知:如图△ABC中,AD是角平分线,CD=CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:31:21
24.已知:如图△ABC中,AD是角平分线,CD=CE
如图,已知:三角形ABC中,BC

∵ED垂直且平分AB,∴BE=AE.∵BE+CE+BC=15cm∴AE+CE+BC=15cm即AC+BC=15cm∵AC=9cm∴BC=6cm

三角形ABC中,BD,CD是内角平分线,如图已知∠A=70°

根据题意有:∠ABC+∠ACB=180°-70°=110°.又因为BD,CD是内角平分线.所以:∠ABC=2∠DBC;∠ACB=2∠DCB;所以:∠ABC+∠ACB=2∠DBC+2∠DCB=110°.

如图,已知△ABC中,BD平分∠ABC,∠A=∠ABD,∠C=∠BDC.求∠A的度数

∵BD平分∠ABC∴∠ABD=1/2∠ABC∵∠A=∠ABD∴∠ABC=2∠A∵∠BDC=∠A+∠ABD∠C=∠BDC∴∠C=2∠A∵∠A+∠ABC+∠C=180°∴∠A+2∠A+2∠A=180°∠A

如图,已知Rt△ABC中,∠B=90°,过顶点A作AD//BC

25°∠ACF=∠AFC=2∠D∠D=∠DCB∠ACF=2∠ECB∠ECB=25°

已知:如图,△ABC中,AB=AC,∠A=120度.

证明:(1)作图如下:(2)CM=2BM证明:连接AM,则BM=AM∵AB=AC,∠BAC=120°∴∠B=∠C=30°,∴∠MAB=∠B=30°,∠MAC=90°∴AM=12CM,故BM=12CM,

已知,如图,在△ABC中,AB

∵AC=8,C△ABE=14,    ∴AB+AE+BE=14    ∵DE垂直平分BC  &nbs

如图,已知Rt△ABC中.

证明:作AG平分∠BAC,交BD于点G∵∠BAC=90°,AE⊥BD∴∠DAE+∠ADB=ABE+∠ADB=90°∴∠ABG=∠CAF∵△ABC是等腰直角三角形∴AB=AC,∠C=∠BAG=45°∴△

已知:如图在RT△ABC中,

过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角

已知,如图,△ABC中,

列关系式就可以了.角ABD=角CBD,角AED=角CED,2角CBD+80=2角AED,角D+角AED+180-(80+2角CBD)+角CBD=180化简得到角D=角CBD-角AED+80角CBD-角

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

【二次函数】已知,如图在Rt△ABC中

这不难(1)∵a,b是方程x^2-(m-1)x+m+4=0的两根∴a+b=m-1①a*b=m+4②∴AB2=52=a2+b2=(a+b)2-2ab=(m-1)2-2(m+4)解得m1=6m2=-2(∵

已知,如图,在△ABC中,CD是△ABC的角平分线,∠A=2∠B

证明:在BC上取一点E,使得CE=AC因为CD=CD,角ACD=角DCE所以三角形ACD全等于三角形ECD所以AD=DE,角A=角DEC因为角DEC=角B+角BDE,角A=2角B所以角B=角BDE所以

已知:如图△ABC中,AB=AC,BD⊥AC,求证:∠CBD=二分之一∠A

设BC的中点为EBE=ECAE=AEAB=AC△ABE≌△ACE∠AEB=∠AEC=90°∠EAC+∠C=90°=∠CBD+∠C所以∠EAC=∠CBD=∠EAB=1/2∠A祝你学习天天向上,加油!

如图,已知△ABC中,∠CAB、∠ABC的外角平分线相交于点

解题思路:利用三角形内角和定理求解。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include

如图,已知三角形abc中

解题思路:过A作AD⊥BC于D,设BD=x,则CD=BC-BD=7-x,根据勾股定理计算出BD,得AD=BD,从而求出∠B解题过程:

如图,已知在等腰△ABC中,∠A=∠B=30°.

(1)作出CD,               &n

已知,如图,三角形ABC中,

来图我告诉你.∵∠DCE=∠D+∠DBE∠ACE=∠A+∠ABE又∵∠DCE=1/2∠ACE∠DBE=1/2∠ABE∴∠A=∠ACE-∠ABE=2(∠DCE-∠DBE)=2∠D∴∠D=1/2∠A=1/