勾股定理一共有多少种证明方法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:49:31
勾股定理一共有多少种证明方法
勾股定理一共有多少种验证方法?

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的.路明思(ElishaScottLoomis)的PythagoreanProposition(《毕达哥拉斯命题》)一书中总共提到367种

用三种方法证明勾股定理

证法1  作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过点C作AC的延长线交DF于点P.∵D、E、F在一条直线上,且

有没有勾股定理的证明方法,10种以上,txt格式(带图)

证法1  作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过点C作AC的延长线交DF于点P.&n

勾股定理的3种证明方法

证法1】(梅文鼎证明)作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵D、E、F在一条

勾股定理的五种证明方法

详见http://zhidao.baidu.com/link?url=945RaW6P9DAB6scW4FUlmm0Y91U_ZexblNSsN90eIeUOhJreoTxCadTwC9huOCdzK

如何证明勾股定理?最好有5种方法.

勾股定理的证明勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊.1.中国方法:画两个

勾股定理的5种证明方法

证法1作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过点C作AC的延长线交DF于点P.∵D、E、F在一条直线上,且Rt

勾股定理证明方法有多少种,具体

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的.路明思(ElishaScottLoomis)的PythagoreanProposition(《毕达哥拉斯命题》)一书中总共提到367种

勾股定理有几种证明方法?

勾股定理的证明有上百种证明方法,下面例句最经典的中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等.左图与右图各有四个与原直角三角形全等的三角形

证明勾股定理的几种方法,最好有图象解释

勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊.1.中国方法:画两个边长为(a+b

说明方法一共有多少种

有打比方,作比较,举例子,列数字,下定义.再答:不用谢

证明一个四边形是平行四边行的方法一共有多少种?

两组对边互相平行,这是根据定义来证明.两组对边相等.一组对边平行且相等.对角线互相平分.两组对角相等.这个是根据四边形内角和为360,既然两组对角相等,则两邻角之和必是180,即互补.于是同旁内角互补

求勾股定理的证明方法,(课本上没有的方法),有多少要多少,

1.S梯形ABCD=(a+b)2=(a2+2ab+b2),①又S梯形ABCD=S△AED+S△EBC+S△CED=ab+ba+c²=(2ab+c²).②比较以上二式,便得a

勾股定理的证明方法有哪些呀

图一在图一中,DABC为一直角三角形,其中ÐA为直角.我们在边AB、BC和AC之上分别画上三个正方形ABFG、BCED和ACKH.过A点画一直线AL使其垂直於DE并交DE於L,交BC於M.不难

勾股定理的证明方法有多少种?

E.S.Loomis博士在他的书里罗列了256个不同证明,并指出到1940年5月1日,共发现370种不同的证明,那个时候他都快88岁了.

勾股定理一共有多少种解法?3Q

勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统.也许是因为勾股定理

证明勾股定理的方法有很多种 下面就是美国第20任总统加菲尔德证明

ACBD是直角梯形面积=(a+b)*(a+b)/2=(a+b)²/2CD之间是E则ACEr面积=ab/2BDE面积=ab/2ABE面积=c²/2所以梯形面积=ab/2+ab/2+c

勾股定理的证明方法

证法1】(梅文鼎证明)作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵D、E、F在一条

证明勾股定理的方法

解题思路:先利用“边角边”证明△ADE和△EBC全等,根据全等三角形对应角相等可得∠AED=∠CBE,再求出∠AEB=90°,然后根据梯形的面积公式和梯形的面积等于三个直角三角形的面积列出方程整理即可

勾股定理到底有多少种证明方法

勾股定理有367种证明方法,最著名的有5种:【证法1】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C