半径为R,电荷体密度为ρ的均匀带电体,再其内部挖去·
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:31:16
B均匀带电球面,电场是对称分布的,高斯面的选取就选和带电球面同球心的球面,这样高斯面上的各点的场强大小相等,方向沿着球半径,也就是各点的球面法向方向.高斯面的电场强度通量Φe=∮E×dS(矢量积分)=
由高斯定理可等效为球心点电荷,因此场强为sigma/4epsilon0,电势为r*sigma/2epsilon0再问:是这个答案再答:没错就是这个
用高斯定理做就可以了.做与球面同心的球面作为高斯面,半径设为2R.由对称性,场强沿高斯面半径方向,高斯面上各点场强的大小处处相等.由高斯定理:E*4π(2R)^2=4πR^2σ/ε0E=σ/4ε0再问
这个没有办法用高斯定理做,假设用高斯,首先要做个闭合的面,这个面只能是个球面(别的面就更复杂了),而这个球面上的场强肯定是大小不均的,你又不能用电量除以面积积分得场强.要求解的话,要积分,把半球面细分
把半球面看作许多圆环,积分即可没有必要在这问这些问题,把教材静电场例题及课后题做会就行了前提是会点微积分知识
这里不好书写,帮你找到了一个地址:这里边的例题8-7,具体解答了你的题目,只不过它的电荷线密度字母不是用a表示.
1题取高斯面为半径为r的与球体同心的球面,由对称性,此面上个点场强大小相等方向沿径向,由高斯定理∮sEds=(1/ε0)∫ρdVr≤R时得E1*4πr^2=(1/ε0)ρ(4/3)πr^3E1=ρr/
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即
点电荷q在距离它r处的电势u=kq/r,k=1/(4πε),ε是真空介电常数.半圆环上任一线元dl上的电荷λdl都相当于一个点电荷,它在圆心处的电势dU=k(λdl)/R.半圆上所有线元上的电电荷都产
这个题很简单啊,课本上应有推理过程.运用高斯定理,求解电场强度,然后再用积分求电势即可
在球外,可以将这个球壳等效为全部电荷集中在球心的点电荷处理,电势分布为k*4paiR^2σ/r(r>R)在球内的时候因为球壳上均匀带电,可以证明在内部所受合力为零,因此无论如何移动都不做功,因此是一个
弱弱得问一下、你学过电场的高斯定理吗?学过的话就好办、没学过的话还要解释一下高斯定理的证明再问:高斯定理正在学习中,所以就遇到了这个问题再答:哦哦、、我刚刚仔细想了想、这题还真不好办、是求圆环所在明面
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再
一均匀带电球体,半径为R,体电荷密度为p,今在球内挖去一半径为r(r<R)的球体,求证由此形成的空腔内的电场死均匀的,并求其值.10
由高斯定理可证,空腔内电场为零.再问:大物课你肯定没认真听讲..这问题我弄懂了没事了再答:你说说看再问:恩也有我没表达清楚的错误我是指的在大球里面随便挖一个小球,所以这个物理模型不具有很强的对称性,于
带电量Q=(4/3)PiR^3*p;U=U1+U2=0+U2=kQ/R=(4/3)PiR^2*p具体:把r换成R/2就可以了.详细参考这个:
先用高斯定理求出电场分布,再积分得到电势.圆柱体内电场pr/2e,外电场pR^2/2re,e这里是真空介电常数.外电势-(pR^2)(lnr)/(2e),内电势[-(pR^2)(lnr)/(2e)]+