2e^-(2x y)dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:43:11
siny-e^x+xy^2=0cosy.y'-e^x+2xy.y'+y^2=0(cosy+2xy)y'=e^x-y^2y'=(e^x-y^2)/(cosy+2xy)
方程两边对x求导,得:y+xy'+y'e^y=2y+2xy'y'e^y-xy'=y得y'=y/(e^y-x)因此dy=ydx/(e^y-x)
虽说结果与路径无关,但是怎么知道起点与终点的位置如何?如果透过格林公式的结果是0,用参数方程的结果又是0,那又如何解释呢?那只有起点和终点的位置都一样,重合了.起点无论从曲线哪处开始也好,都绕曲线正向
e^(xy)-(x^2)+(y^2)=1两边同时对x求导,得e^(xy)*(y+xy')-2x+(2yy')=0[xe^(xy)+2y]y'=2x-ye^(xy)dy/dx=[2x-ye^(xy)]/
对方程取导数y+x(dy/dx)+(dy/dx)=0(dy/dx)(x+1)=-ydy/dx=(-y)/(x+1)
y'e^y+e^x-y²-2xyy'=0y'=(e^x-y²)/(2xy-e^y)即:dy/dx=(e^x-y²)/(2xy-e^y)祝你开心!希望能帮到你,如果不懂,请
sin(x^2+y^2)+e^x-xy^2=0左右微分得到cos(x^2+y^2)*(2xdx+2ydy)+(e^x)dx-(y^2)dx-2xydy=0余下的求出dy就可以了
这是隐含数求导,两边先对x求导,e^x=-y'siny-(y^2+x2yy'),整理得y'=-(y^2+e^x)/(siny+2xy),把x=0代入,得y'|x=0=-(y^2+1)/siny,是不是
4/e^2隐函数求导dy/dx=-y/(x-e^y)x=e^2/2时,y=2
siny+e^x=xy^2,两边求微分,cosydy+e^xdx=d(xy^2)cosydy+e^xdx=y^2dx+2xydy整理,得(e^x-y^2)dx=(2xy-cosy)dydy/dx=(e
f(x,y)=e^xy+x+y=2求全微分(Df/Dx)dx+(Df/Dy)dy=0dy/dx=-(y*e^xy+1)/(x*e^xy+1)如果x=1dy/dx|x=1=-(ye^y+1)/(e^y+
解两边求导y‘cosy+e^x-y^2-2xyy'=0即y’(cosy-2xy)=y^2-e^xy'=(y^2-e^x)/(cosy-2xy)或者F(x,y)=siny+e^x-xy^2=0Fx=e^
三种方法1式中同时对x求导-(y+xy‘)cosxy+2yy'=0解出y’2式中同时取微分d{sin(xy)+y^2-e^2}=dsin(xy)+dy^2-de^2=-cosxydxy+2ydy=-c
你好!两边对x求导:e^(xy)*(y+xy')-y^2=y'cosy解得y'=(y^2-ye^(xy))/(xe^(xy)-cosy)
dx/dy-3xy=xy^2dx/x=(y^2+3y)dy两边积分得:lnx=y^3/3+3y^2/2+c==>x=exp(y^3/3+3y^2/2+c)=Cexp(y^3/3+3y^2/2)C常数
直接使用通解公式:y=e^(x^2)(C+亅cosxdx)=e^(x^2)(C+sinx)再问:谢谢您的解答,但通解公式太复杂,有没有另一种方法。
dy/dx=xy²+3xydy/dx=x(y²+3y)∫1/[y(y+3)]dy=∫xdx(1/3)∫(3+y-y)/[y(y+3)]dy=∫xdx∫[1/y-1/(y+3)]dy