2sn=an 1-2^n 1 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:55:45
查收!再答:正在上传中再答:再答:
因为Sn+1,Sn,Sn+2成等差数列S(n+1)+S(n+2)=2*S(n)(q^(n+1)-1)*a1/(q-1)+(q^(n+2)-1)*a1/(q-1)=2*(q^(n)-1)*a1/(q-1
当n=1时、有2s1+1=3a1,即有a1=1,因为2Sn+1=3an,所以2Sn+1+1=3an+1.后式减去前式,得2an+1=3an+1-3an.即有an+1=3an,为等比数列,且公比为3,所
由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴
an+2Sn*Sn-1=0其中an=Sn-Sn-1代入上式:Sn-Sn-1+2Sn*Sn-1=0a1=1/2,故Sn和Sn-1≠0,上式两边同除以Sn*Sn-1得:1/Sn-1-1/Sn+2=0即:1
由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn
an=-Sn.S(n-1)Sn-S(n-1)=-Sn.S(n-1)1/Sn-1/S(n-1)=11/Sn-1/S1=n-11/Sn=nSn=1/n
Sn=a1(1-q^n)/(1-q)Sn+1=a1[1-q^(n+1)]/(1-q)Sn+2=a1[1-q^(n+2)]/(1-q)2Sn+2=Sn+Sn+1a1[1-q^(n+1)]/(1-q)+a
我会我会Sn+1=Sn-2nSn+1Sn两边同除以Sn+1*Sn得1/Sn+1-1/Sn=2n以此类推1/Sn-1/Sn-1=2(n-1)1/Sn-1-1/Sn-2=2(n-2)...1/S2-1/S
(1)证明:若an+1=an,即2an1+an=an,解得an=0或1.从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,故an+1≠an成立.(2)由a1=12,得到a2=2
由题意,S(n)-S(n-1)=2a(n+1)-2a(n),即a(n)=2a(n+1)-2a(n),于是a(n+1)=a(n)*3/2,即a(n)是公比是q=3/2的等比数列,且首项是a(1)=1,所
再问: 再问:那个划横线的答案是不是错了再答:我觉得是
(1)由sn=sn-12sn-1+1(n≥2),a1=2,两边取倒数得1Sn=1Sn-1+2,即1Sn-1Sn-1=2.∴{1sn}是首项为1S1=1a1=12,2为公差的等差数列;(2)由(1)可得
n>=2时:∵an=2Sn^2/[(2Sn)-1]∴Sn-(Sn-1)=2Sn^2/[(2Sn)-1]两边同时乘以(2Sn)-1并化简得2Sn(Sn-1)+Sn-(Sn-1)=0两边同时除以Sn(Sn
n≥2时,an=Sn-S(n-1)=2Sn²/(2Sn-1)[Sn-S(n-1)](2Sn-1)=2Sn²-Sn-2SnS(n-1)+S(n-1)=0S(n-1)-Sn=2SnS(
2sn=2x2+3x2^2x2+5x2^3x2(2n-1)x2^nx2sn=2sn-sn=2x2^2+2x2^3+…+2x2^n-1x2
(1)An=3(1+2^n)(2)由题知,Sn=2An+3n-12=6(2^n-1)+3nBn=(An-3)/(Sn-3n)(A(n+1)-6)=(3*2^n)/(6(2^n-1))(3(2^(n+1
∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4
2(Sn+1)(Sn)/(Sn-Sn+1)=1上下除以(Sn+1)(Sn)得到2/(1/Sn+1-1/Sn)=11/(Sn+1)-1/Sn=2因此1/Sn+1为等差数列,1/S1=1/a1=1/21/