及平面z=1所谓成的区域的整个边界曲面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:08:36
及平面z=1所谓成的区域的整个边界曲面
计算I=∫∫∫Ω(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z及平面z=2所围成的区域.

用截面法,积分=∫dz∫∫(x^2+y^2)dxdy,先用坐标计算∫∫(x^2+y^2)dxdy=∫dθ∫r^3dr(r积分限0到√(2z),θ积分限0到2π)=2πz^2,所以原积分=2π∫z^2d

∫∫∫Ωxzdsdydz,其中Ω是由平面x=y,y=1,z=0及抛物柱面y=x^2所围成的闭区域

题目出错了,区域不封闭,向上的方向是开口的,估计原题的意思是把y=1改成z=1.

重积分算体积求旋转抛物面z=x^2+y^2,三个坐标平面及平面x+y=1所围有界区域的体积.答案是1/6,我怎么觉得这图

在第一象限是封闭的,用曲面积分算,在xy平面的投影,二重积分(x²+y²)dxdy=∫从0到1dy∫从0到1-y(x²+y²)dx,答案就是1/6.

计算由曲面z=x*x+y*y及平面z=1所围成的立体体积

z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋

(1)曲面x^2+y^2+z^2=R^2 与x^2+y^2+z^2=2Rz所围成的立体,求它在Oxy平面上的投影区域

(1)∵x²+y²+z²=R²,x²+y²+z²=2Rz∴R²=2Rz==>z=R/2==>x²+y²

设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy

第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2

求曲面∫∫(x^2+y^2)ds的积分,∑是锥面z=✔(x^2+y^2)及平面z=1所围成的区域的整个边界

再问:函数)x^2+y^2不是在∑2上吗,也就是x^2+y^2=1,那不就是求曲面积分∫∫ds的弧长吗再答:空间区域的整个边界,你怎么看?再问:什么意思?我基础很差的再答:上面的那个面也是边界啊,所以

计算三重积分,其中V为三个坐标面及平面 x+y+z=1 所围成的闭区域

原式=∫dz∫dy∫xdx=∫dz∫(1/2)(1-y-z)^2dy=(1/2)∫dz∫[(1-z)^2-2(1-z)y+y^2]dy=(1/6)∫(1-z)^3*dz=(1/6)∫(1-3z+3z^

计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域

Ω为三个坐标面及平面x/2+y+Z=1所围成的区域,原式=∫zdz∫dy∫dx=∫zdz∫2(1-y-z)dy=∫z[2(1-z)^-(1-z)^]dz=∫(z-2z^+z^3)dz=[(1/2)z^

计算∫∫∑(x^2+y^2)dS其中∑为锥面z=√(x^2+y^2)及平面z=1围成的整个边界曲面

再问:我漏了平面的了。还有一道题!再答:说来看看,不过要确保那个曲面是有限的

高数二重积分题 求下列给定区域体积由XOY平面与z=2-x^2-y^2所围成的有界区域

二重积分再问:请问能否解释下你的解题思路我不是很会再答:第一个等号:二重积分计算体积;第二个等号:二重积分坐标变换;第三个等号:二重积分化累次积分;第四个等号:。。。

平面区域D由曲线y=1/x及直线y=x ,x=2所谓成求面积A

把图形分解,从0到1,可以求出三角形面积为1/2从1到2,由定积分,可以解出为ln2-ln1=ln2所以总面积为1/2+ln2.

设∑是柱面x^2+y^2=9及平面z=0,z=3所围成的区域的整个边界曲面,计算∫∫(x^2+y^2)dS

好好学高数,这是以后学专业课的基础,不要网上问了,有人回答答案也是似是而非的,不会了问学霸同学,或者老师答疑的时候去问问再问:TT身边没有学霸。。课已经讲完了唉再答:x²+y²=9

原题:计算三重积分,其中积分区域D是由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域.

先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:

计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

原式=∫xdx∫dy∫dz=∫xdx∫(1-x-2y)dy=∫x[(1-x)²/4]dx=1/4∫(x-2x²+x³)dx=(1/2-2/3+1/4)/4=1/48.

计算三重积分∫∫∫ xydxdydz 其中Ω为三个坐标面及平面x+y+z=1所围成的闭区域

就用直角坐标计算再答:再问:∫(0,1)xdx∫(0,1-x)dy∫(0,1-x-y)dz我这么算怎么我算到1/8的?再答:不是被积函数是xy么再问:∫(0,1)xdx∫(0,1-x)ydy∫(0,1

计算∫∫∫下面放一个∩ 的符号xdxdydz,其中∩ 由三坐标面及平面x+y+z=1所围的空间闭区域

Ω在XOY平面投影为:x=0,y=0,x+y=1,所围成的三角形,原式=∫∫∫(Ω)xdxdydz=∫(0→1)xdx∫(0→1-x)dy∫(0→1-x-y)dz=∫(0→1)xdx∫(0→1-x)d

∫∫∫=xdxdydz其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

第一步先把这个拆成三个维度的.其中x的范围0-1,y的范围0-[(1-x)/2],z的范围0到(1-x-2y)写起来是∫xdx∫dy∫dz这个写起来还真不好写,然后全部整理成dx,就可以得到:(时间不

有关三重积分的问题由双曲抛物面z=xy及平面z=0,x+y=1所围成的闭区域此题的x,y,z的范围应该怎么样确定 理由是

所围成的闭区域是在第一卦限,在z方向的范围:底面为z=0,即为xoy坐标平面,上面即为马鞍形双曲面z=xy.x和y的范围均为从0到与z轴平行的平面x+y=1.所以,z的积分范围为[0,xy]x的积分范