双曲线X2 A2-Y2 (A-2)2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:53:27
双曲线X2 A2-Y2 (A-2)2
已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2:y2=2px(p>0)

设点P(x0,y0),F2(c,0),过P作抛物线准线的垂线,垂足为A,连接PF2,由双曲线定义可得|PF2|=|PF1|-2a由抛物线的定义可得|PA|=x0+c=2c-2a,∴x0=c-2a在直角

已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双

你好像问题没写完吧,还有你那句英文你是我能鼓足勇气去做这件事什么意思啊

已知点A是双曲线x2a2−y2b2=1(a>0,b>0)的渐近线与抛物线y2=2px(p>0)的交点,F是抛物线的焦点,

∵抛物线y2=2px(p>0)的焦点是F(p2,0),∵且AF⊥x轴∴A的坐标A(p2,p)点A是双曲线x2a2−y2b2=1(a>0,b>0)的渐近线上的点,∴ba=pp2=2则双曲线的离心率为ca

已知双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线与曲线y=x−1相切,且右焦点F为抛物线y2=20x的焦点

∵双曲线的右焦点F为抛物线y2=20x的焦点,∴F(5,0),即a2+b2=25①.y=bax代入y=x−1,可得b2a2x2−x+1=0,∵双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线

已知抛物线y2=2px(p>0)与双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线交于一点M(1,m),点&n

由题意,抛物线上的点M(1,m),点 M 到抛物线焦点的距离为 3,∴1+p2=3,解得p=4.∴知抛物线的方程为y2=8x,把点M(1,m)代入得m2=8,解得m=±2

已知双曲线x2a2−y2b2=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为

因为圆C:x2+y2-6x+5=0⇔(x-3)2+y2=4,由此知道圆心C(3,0),圆的半径为2,又因为双曲线的右焦点为圆C的圆心而双曲线x2a2−y2b2=1(a>0,b>0),∴a2+b2=9①

从双曲线x2a2-y2b2=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P

如图所示,设F′是双曲线的右焦点,连接PF′.∵点M,O分别为线段PF,FF′的中点.由三角形的中位线定理可得:|OM|=12|PF′|=12(|PF|-2a)=12|PF|-a=|MF|-a,∴|O

已知双曲线x2a2−y29=1(a>0)的中心在原点,右焦点与抛物线y2=16x的焦点重合,则该双曲线的离心率等于(

∵抛物线y2=16x的焦点是(4,0),∴c=4,a2=16-9=7,∴e=ca=47=477.答案为:477.故选D.

已知抛物线y2=2px(p>0)的焦点为双曲线x2a2−y2b2=1(a>0,b>0)的一个焦点,且两条曲线都经过点M(

(1)∵抛物线y2=2px(p>0)经过点M(2,4),∴42=2p×2,解得p=4,∴抛物线的标准方程为y2=8x.…(3分)∴抛物线的焦点为(2,0),∴双曲线的焦点为F1(-2,0),F2(2,

如图,已知抛物线y2=2px(p>0)的焦点F恰好是双曲线x2a2−y2b2=1(a>0,b>0)的右焦点,且两条曲线交

由题意,∵两条曲线交点的连线过点F∴两条曲线交点为(p2,p),代入双曲线方程得p24a2-p2b2=1,又p2=c∴c2a2-4×c2b2=1,化简得c4-6a2c2+a4=0∴e4-6e2+1=0

(2014•顺义区一模)过椭圆x2a2+y2b2=1(a>b>0)的焦点垂直于x轴的弦长为12a,则双曲线x2a2-y2

据题意知,椭圆通径长为12a,故有2b2a=12a⇒a2=4b2⇒b2a2=14,故相应双曲线的离心率e=1+(ba)2=1+14=52.故选B.

过双曲线x2a2-y2b2=1 (a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,

设双曲线的右焦点为F',则F'的坐标为(c,0)因为抛物线为y2=4cx,所以F'为抛物线的焦点O为FF'的中点,E为FP的中点所以OE为△PFF'的中位线,那么OE∥PF'因为OE=a那么PF'=2

(2014•湛江二模)已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点

∵抛物线y2=16x的焦点坐标为F(4,0),双曲线一个焦点与抛物线y2=16x的焦点相同,∴双曲线右焦点为F(4,0),得c=2∵双曲线的离心率为2,∴ca=2,得c=2a=2,a=1,由此可得b=

(2014•江西)如图,已知双曲线C:x2a2-y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线AF⊥x轴,

(1)依题意知,A(c,ca),设B(t,-ta),∵AB⊥OB,BF∥OA,∴c+tac−t•−1a=-1,1a=ta(c−t),整理得:t=c2,a=3,∴双曲线C的方程为x23-y2=1;(2)

若双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点分成

因为线段F1F2被抛物线y2=2bx的焦点分成7:3的两段,所以b2=25c∴5b=4c∴25(c2-a2)=16c2∴3c=5a∴e=ca=53故选B.

已知抛物线y2=8x的焦点与双曲线x2a2-y2=1的一个焦点重合,则该双曲线的离心率为 ___ .

抛物线y2=8x的焦点坐标为(2,0)∵抛物线y2=8x的焦点与双曲线x2a2-y2=1的一个焦点重合,∴a2+1=4,∴a=3∴e=ca=23=233故答案为:233

(2014•龙岩模拟)已知抛物线y2=2px(p>0)的焦点F为双曲线x2a2−y2b2=1(a>0,b>0)的一个焦点

抛物线的焦点为(p2,0)双曲线的焦点为(c,0)(其中c2=a2+b2)所以p=2c经过两曲线交点的直线垂直于x轴,所以交点坐标为(c,b2a)代入抛物线方程得b2=2ac即c2-2ac-a2=0解

已知双曲线x2a2−y2=1(a>0)的右焦点与抛物线y2=8x焦点重合,则此双曲线的渐近线方程是(  )

∵抛物线y2=8x的焦点是(2,0),∴c=2,a2=4-1=3,∴a=3,∴ba=33,故选D.

已知抛物线y2=2px(p>0)与双曲线x2a2-y2b2=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且|

∵抛物线的焦点和双曲线的焦点相同,∴p=2c∵|AF|=p,∴A(p2,p)∵点A在双曲线上∴p24a2-p2b2=1∵p=2c,b2=c2-a2∴c2a2-4c2c2-a2=1化简得:c4-6c2a

已知抛物线y2=2px(p>0)焦点F恰好是双曲线x2a2-y2b2=1(a>0,b>0)的右焦点,且双曲线过点(3a2

∵抛物线y2=2px(p>0)焦点F恰好是双曲线x2a2-y2b2=1(a>0,b>0)的右焦点,∴c=p2,p=2c.∵双曲线过点(3a2p,b2p),∴9a4p2a2−b4p2b2=1,∴9a2p