双曲线的右焦点F,三角形MNF面积ab,MF.NF=0,求双曲线的离心率
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:20:02
题目不是说了这条平行于一条渐进线的直线过F点么?F点不就是焦点么?你也许是没看清楚题目.或者没理解题目的意思.下次细心点咯~
设∠F₁PF₂=α双曲线方程为x^2/a^2-y^2/b^2=1因为P在双曲线上,由定义|PF₁-PF₂|=2a在焦点三角形中,由余弦定理得F̀
1、渐近线方程为:y=±4x/3,设右焦点坐标F(c,0),c=√(a^2+b^2)=5,过点F平行双曲线的一条渐近线的直线斜率=±4/3,y=±4/3(x-5),代入双曲线方程,解出B点坐标,x^2
设双曲线方程为:x^2/a^2-y^2/b^2=1(a、b>0)则左焦点F(-c,0)、右顶点E(a,0)过F的垂直x轴的直线与双曲线相交于A、B两点,那么由对称性知,∠EAF=∠EBF由三角形的内角
证明:如图,MF为直径的圆,圆心是N(MF的中点),半径是(1/2)|MF|双曲线的实轴为直径的圆,圆心是O,半径是a则圆心距ON=(1/2)|MF'|=(1/2)|MF|+a即圆心距等于半径
1.要使两条焦半径相等,所以MN与x轴垂直,设M(x,y),因为是等边三角形,所以FA=MA的根号三倍(A是MN与x轴的焦点),所以1-x=(根号3)*y,在根据抛物线方程,求出y=4-2(根号3),
如图,过点A,B,F分别做垂线,与准线分别交于P,Q,R过F直线AB斜率为√3,即 k=tanα=√3,∴直线倾角α=60°由离心率定义有:e=AF/AP=BF/BQ设BQ=x,α=60°,
一条渐近线y=4x/34x-3y=0右焦点F(5,0)F点到直线l的距离d=|4*5|/5=4(结论,双曲线焦点到准线的距离=半短轴b)
1、渐近线方程为:y=±4x/3,设右焦点坐标F(c,0),c=√(a^2+b^2)=5,过点F平行双曲线的一条渐近线的直线斜率=±4/3,y=±4/3(x-5),代入双曲线方程,解出B点坐标,x^2
是的,有相似的公式.可以这样推:不防设双曲线焦点在x轴,P点在右支曲线上.在三角形PF1F2由正弦定理得sina/PF2=sinb/PF1=sin(pi-(a+b))/F1F2=sin(a+b)/F1
e>根号2 直线l过F点,与y=-b/a*x平行时,直线l的斜率等于-b/a,看作直线l绕着F点逆时针旋转方能与直线y=-b/a*x交于第二象限,而直线l绕着F点逆时针旋转时斜率变大但
如果是△OFP的话...点P到x轴距离为根号3,所以S△OFP=1/2*根号3*c=根号6/2解得c=根号2不妨设双曲线为其标准方程(难得打字)则a^2+b^2=2将P点坐标代入得a=1,b=1∴离心
X2/9-Y2/16=1,F1(-5,0),F2(5,0)设PF1=T,PF2=T+6由余弦定理,1/2=(T^2+(T+2)^2-100)/2*(T+2)*T解得T(T+2)=96S=1/2*SIN
设双曲线中心为:(d,0)右准线为x=4:a^2/c=4-d右焦点F(10,0),c=10-d离心率为e=2,c/a=2解方程组a^2/c=4-dc=10-dc/a=2得:a=4,c=8,d=2b^2
/>双曲线方程:3x²-y²=3右焦点F2(2,0)直线为y=(√3/3)(x-2)代入双曲线方程3x²-(1/3)(x-2)²=3即9x²-(x-2
过F且倾斜角为60°的直线与双曲线右支有且只有一个交点则双曲线的渐进线的斜率>=根3即b/a>=根3b^2/a^2>=3b^2>=3a^2c^2=a^2+b^2>=4a^2c^2/a^2>=4e=c/
即∠FAB<45°a+c>b^2/a(通径一半)∴a^2+ac>c^2-a^2∴c^2-ac-2a^2<0∴e^2-e-2<0∴(e-2)(e+1)<0∴-1<e<2∵双曲线e>1∴e∈(1,2)
设双曲线方程为x^2/a^2-y^2/b^2=1,P(x,y)在双曲线上.1)如果PA丄PF,因为A(-a,0),F(c,0),则(x+a)(x-c)+y^2=0,且(x+a)^2+y^2=(x-c)