反常积分 lnx (1 x)的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 06:56:30
反常积分 lnx (1 x)的平方
求反常积分 ∫(1-->e)dx/x *根号下面是{1-(lnx)^2}

用换元法:令u=lnx,x=e^u==>dx=e^udu当x=1,u=0:当x=e,u=1==>∫(0~1)e^u/[e^u*√(1-u²)]du=∫(0~1)du/√(1-u²)

计算反常积分:∫(1,2)1/[x(lnx)^2]dx=

∫(1,2)1/[x(lnx)^2]dx=∫(1,2)1/(lnx)^2]dlnx=-1/lnx(1,2)lim(x趋于1)(-1/lnx)趋于无穷所以该积分发散再问:为什么x趋于1再答:1是下限再问

反常积分∫ 0到正无穷大dx/(1+x+x^2)的敛散性

答:∫dx/(1+x+x^2)=∫dx/[(x+1/2)^2+3/4]=4/3∫dx/[(2x+1)/√3)^2+1]=2/√3∫d[(2x+1)/√3]/[(2x+1)/√3)^2+1]=2/√3a

(x/lnx)/(1+x^2)的平方 dx,上限2,下限1,求定积分

原式=x^2/Inx(1+x^2)^2|(1→2)-∫(1→2)dx^3/Inx2(1+x^2)^2=[x^2-(x^3/2)]/Inx(1x^2)^2|(1→2)=0(由于分母总是等于0,本题考察分

当k为何值时,反常积分∫(e,正无穷)dx/[x(lnx)^k]收敛?当K为何值时,这反常积分发散?

∫(上限为正无穷,下限为e)1/x*(lnx)^kdx=∫1/(lnx)^kdlnx(x上限为正无穷,下限为e)=1/(1-k)∫d(lnx)^(1-k)(x上限为正无穷,下限为e)=[1/(1-k)

求in(1-x)dx在0-1上的反常积分

再问:再问:但是如果要求不换元应该怎么做?到这一步的时候带入1可以直接消去负无穷吗?为什么啊?再答:不能,因为代入后ln后面为零,ln(1-x)为负无穷,如果前面有1-x就可以,以为代入1肯定为零的,

反常积分的问题dx/(e^(x+1)+e^(3-x))求其1到正无穷大的反常积分

上下同时除以e^(x+1):原是=∫[e^(-x-1)]/[e^(2-2x)+1]dx=e^(-2)∫[e^(1-x)]/[e^(2-2x)+1]dx=-e^(-2)∫1/[e^(2-2x)+1]de

讨论反常积分∫dx/x(lnx)^k 上标+∞ 下标e

把我曾经答的一道题给你,∫(e,+∞)dx/(x*(lnx)^k)=∫(e,+∞)1/(lnx)^k*d(lnx)1.k=1原式=ln(lnx)|(e,+∞)发散2.k>1原式=1/(1-k)(lnx

反常积分 2到正无穷 1/x(lnx)^k dx

∫1/x(lnx)^kdx=∫(lnx)^kdlnx因1/xdx=dlnx若(k≠-1)=(lnx)^(k+1)/(k+1)+c若(k=-1)=ln(lnx)+c反常积分为=lim(x→+∞)(lnx

k为什么值时,反常积分S上限正无穷,下限2 ,1/[x*(lnx)^k] dx 收敛 ,什么时候又发散,什么值时 这个反

做变量代换:lnx=t即可----------------------------------------------------------------------并不是我不认真,我是认为关键性的步

求lnx-1/(lnx)^2的积分

原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分

判断反常积分∫1~∞arctanx/1+x^2 dx的敛散性

∫arctanx/(1+x²)dx=∫arctanxd(arctanx)=0.5(arctanx)²代入上下限∞和1显然tanπ/2=+∞即arctan∞=π/2,arctan1=

1/x((lnx)^2)的积分是多少

原式=∫d(lnx)/(lnx)^2=-1/lnx+C再问:∫上面是正无穷,下面是e的反常积分是多少。。。再答:原式=-1/lnx|(e→+∞)=0+1=1(因为lim(t→+∞)-1/lnt=0)

求1到正无穷上的反常积分dx/x^*2(1+x)

若为∫(1.+∞)(1+x)/x^2dx=∫(1.+∞)(1/x^2+1/x)dx=(-1/x+ln|x|)|(1.+∞))=+∞若为∫(1.+∞)1/[x^2*(1+x)]dx待定系数法:设1/[x

求(1-lnx)/(x+lnx)^2的积分 (x+lnx)^2为x+lnx的平方

(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出