反常积分x (根号下1-x^2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:56:54
用换元法:令u=lnx,x=e^u==>dx=e^udu当x=1,u=0:当x=e,u=1==>∫(0~1)e^u/[e^u*√(1-u²)]du=∫(0~1)du/√(1-u²)
∫dx∫(x,√3x)e^[-(x^2+y^2)]dy=∫dt∫(0,+∞)e^(-r^2)rdr=(π/12)∫(0,+∞)(-1/2)e^(-r^2)rd(-r^2)=(π/24)[-e^(-r^
∫根号(1+1/x^2)dx=∫根号(x^2+1)/xdx令t=根号(x^2+1)x=根号(t^2-1)dx=t/根号(t^2-1)dt=∫t/根号(t^2-1)*t/根号(t^2-1)dt=∫t^2
∫(x+2)dx/√(x+1)=∫(x+1+1)dx/√(x+1)=∫√(x+1)dx+∫dx/√(x+1)=(2/3)(x+1)^(3/2)+2√(x+1)+C再问:=∫(x+1+1)dx/√(x+
由分部积分将原积分化为2sinxcosx/x从0到无穷积分上式等于sin2x/x由变量替换可化为sinx/x从0到正无穷积分该积分为Dirichlet积分其值为pai/2,pai为圆周率至于Diric
可用变量代换求解,如图.
令x=tanaa=arctanxseca=√(x²+1)1+x²=sec²adx=sec²ada原式=∫sec²ada/seca=∫secada=∫(
既要换元,又要分部,还涉循环积分.初学者有难度.
过程很简单,用第二类换元积分法便可解决请看图:
负二分之一积分号根号下(1-x∧2)d(1-x∧2)再答:可懂了?再问:负二分之一是怎么求的?再答:d(1-x∧2)再答:变成-2xdx再答:而原来只有xdx再答:所以提取-1╱2再问:再答:再答:亲
原式=∫1/(1-x)(1+x)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln|1-x|+ln|1+x|]+c=1/2ln|(1+x)/(1-x)|+c啊,原来有根号啊应该是ar
∫1/((x+1)^0.5+(x+1)^1.5)dx=∫1/((x+1)^0.5+(x+1)^1.5)d(x+1)=∫1/((x+1)^0.5(1+(x+1))d(x+1)=∫1/((x+1)^0.5
答:设t=√[x/(x+1)]t^2=(x+1-1)/(x+1)=1-1/(x+1)1/(x+1)=1-t^2x+1=1/(1-t^2)x=-1+1/[(1-t)(1+t)]x=-1+(1/2)*[1
∫(x/√(x^2-1)dx=1/2∫[1/√(x^2-1)]d(x^2)=1/2∫[1/√(x^2-1)]d(x^2-1)=1/2∫[1/√y]dyc=(1/2)*c'=√x^2-1+c
令x^1/2=t即x=t^2,dx=2tdt原式=2∫[0,+∞]e^-t·tdt分部积分:=2[-e^-t·t|[0,+∞]+∫[0,+∞]e^-tdt]=2[-e^-t·t-e^-t]|[0,+∞
我认为问题是不是要乘r.即对[(1-r'2)/(1+r'2)]开方后再乘r.然后再求积分?这样二重积分结果为:{(pai)'2-2*pai}/8.不知是否正确?(pai是圆周率)
再问:导数第三步那里我没化回sint的形式直接把x=arcsinx反带可以吗?再答:可以