反证法证明数列的保序性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:17:30
设存在一个等腰三角形ABC,其中∠A,∠B为两个底角,按照等腰三角形的性质,∠A=∠B.假设等腰三角形的两个底角不是锐角,即∠A=∠B≥90°那么可以知:∠A+∠B+∠C≥90°+90°+∠C=180
假设所有的素数依次是2,3,5...P令M=2*3*5*...*P+1因为2,3,5...P不能整除M,则M要么是素数或者有比P更大的素数能整除M,2种情况下都说明有新的更大的素数,与假设矛盾,所有素
三角形中每个角都大于60度梯形的对角线能互相平分
面S上两直线AB、CD交与O点直线L垂直于AB、CD证明:如果L不垂直于面S则L要么平行于S,要么斜交于S且夹角不等于90若L平行于S则不可能于AB、CD相交矛盾若L斜交于S且夹角不等于90过L与S的
0.9的循环等于1,这只能用反证法.只能假定它不成立,证明不成立的理由是错的.而无法直接证明其相等
你要假设也可以..虽然不用..直接令t=(a+b)/2,令ε=|t-a|就可以了
证明:设直线a‖直线b,a不在平面α内,b在平面α内.假设若平面外的一条直线与平面内的一条直线平行,那么这条不一定直线与这个平面平行.若直线a与平面α不平行,且由于a不在平面α内,则有a与α相交,设a
你想复杂了吧设两条高交与一点,第三条不经此点你再证明第三条也过假设不成立得证
证明:(反证法)假设在Rt△ABC中锐角A+B≠90°则存在两种情况,一是A+B>90°,那么A+B+C>180°;而是A+B<90°,那么A+B+C<180°这都与“三角形内角和等于180°”矛盾所
证明:假设等腰三角形的两个底角不相等设底角分别为A,B做底边的高,因为等腰三角形的底边高也是底边的中线,角平分线所以两个三角行全等,可以知A=B]与假设矛盾所以假设不成立所以等腰三角形的两个底角相等
证明思路是先说明序列从某一项N以后都被束缚在极限值的某个邻域里,前面N-1项再怎么大也是有限的,必然有界,于是序列有界就得到证明了.至于极限值的这个邻域具体多大,我们没有必要管,只知道它存在就可以了.
1.假设命题不成立2.由假设出发,经过推理论证,得出矛盾3.由矛盾得出假设不成立,从而证明原命题正确
ax*x+bx+c=0bx*x+cx+a=0cx*x+ax+b=0abc三个数不是0,求证这三个二次方程至少有一个有实数根已知a大于0,b大于0,且a加b等于2,用反证法证明(1+a)/b,(1+b)
采用反证法.证明:假设(1-a)b,(1-b)c,(1-c)a都大于1/4因01/4b1-b>1/4c1-c>1/4a三式相加变形得3-(a+b+c)>1/4*(1/a+1/b+1/c)再两边乘2,变
1.题目中的条件无法直接用上的2.要求证的结论是否定形式的就一名高中生来说,我认为初中用反证法的场合极少,只有在证明个别定理时用到,考试时几乎不用
设两个都没有解.所以就有:b^2-4ac
lim(Xn-Yn)=a/b因为Xn
设limxn=alimxn=ba0,存在N1>0,当n>N1时|xn-a|0,存在N2>0,当n>N2时|xn-b|
第一步:假设命题的反面成立.第二步:由假设作为条件,根据已知条件及学过的定义、定理、公理进行逐步的推理直至与假设或与某个己知条件或与学过的某个定义、定理、公理出现矛盾.第三步:从而判断假设错误,原命题