可去间断点补充定义以后的求导问题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:36:49
可去间断点补充定义以后的求导问题
高数...分析函数间断点类型并补充可去间断点定义 f(x)=(1+2x)^1/x

x=0为间断点lim(1+2x)^(1/x)=lim[(1+2x)^(1/(2x))]^2=e^2所以x=0是可去间断点补充定义f(0)=e^2再问:谢谢恩可是怎么就等于e^2了?再答:(1+2x)^

高数.函数在一点处无定义,可以是无穷间断点,可去间断点,振荡间断点,也可以是跳跃间断点.

不对,有定义和间断点木有一点关系,你之所以会这样问,是因为这两个都可以说是函数性质中比较抽象的了,举个简单的例子,符号函数在x=0点是有定义的,但其在0点是间断的.

【大学高数】连续点、可去间断点、无穷间断点、震荡间断点怎么区分?

在高数中,某个间断点一般不是第一类就是第二类.只需要比较一下函数在该间断点的左右极限就可以了.如果左极限=右极限则为可去间断点,若不相等则为跳跃间断点;若左右极限中至少有一个为无穷大(不存在),则为无

函数y=x/sinx 有间断点____,其中____为可去间断点

函数y=x/sinx有间断点x=0____,其中x=0____为可去间断点函数y=x/sinx的图像见参考资料

判断函数的指定点间断点类型,if可去间断点,请补充或改变函数的定义使它连续.y=(x^2-1)/(x^2-3x+2),x

因为lim(x+→1)y=lim(x-→1)y=-2,所以x=1是可去间断点.补充定义为当x=1时y=-2再问:还有x=2啊亲再答:x=2的时候,左右极限都是+∞不是可去间断点。哥们,原式上下同时除以

如果一个函数在某个点上无定义,如果求其可去间断点是否无须考虑其左右极限?

要考虑的.可去间断点就是左极限等于右极限啊,只有相等了才是判定是可去呢.

谁知道函数可去间断点的定义啊

间断点有三种:①可去间断点=第一类间断点左极限=有极限≠函数值(或未定义)②跳跃间断点=第二类间断点左极限≠右极限③无穷间断点=第三类间断点极限不存在(无穷或不能确定)如:y=sin(1/x)x=0再

可去间断点的个数,大学高数内容.

当x→0时,f(x)→1/π,当x→1时,f(x)→1/π,因此可去间断点有两个x=0和x=1.

高数之函数的连续性下列函数在指出的点处间断,说明这些间断点属于哪一类型.如果是可去间断点,则补充或改变函数的定义使它连续

(1)y=x/tanx,K=0,x=Kπ为可去间断点,y|x=0=1K≠0,x=Kπ为第二类间断点.x=Kπ+π/2为可去间断点,y|x=kπ+π/2=0(2)y=[cos(1/x)]^2,x=0,为

可去间断点和跳跃间断点的问题

不可能的.可去间断点是该点左右极限都存在且相等,但不等于该点函数值;跳跃间断点是该点左右极限都存在但不相等.绝对值函数的可疑间断点一般优先考虑绝对值为0的点.任意函数的可疑间断点一般都先考虑定义域的边

求函数f(x)的连续区间,并判断间断点的类型,若有可去间断点,则补充定义使得f(x)在该点连续.

连续区间(-无穷大,-1)(-1,0)(0,1)(1,无穷大).-1,0,1是间断点.只有1是可去间断点,令f(1)=0.5即可.再问:请问为什么答案说是:1为可去间断点,0为跳跃间断点,-1为无穷间

指出函数的间断点属于哪一类型,如果是可去间断点,请补充定义使函数连续.

 再问:能否按照标准步骤写一个过程我参考下?再答: 

高数 可去间断点我可不可以认为,可去间断点,就是分子、分母都趋于0,并且该点没有定义?

不可以.例如这样一个函数:f(x)=1,若x≠0;f(x)=0,若x=0.显然是个分段函数没问题,而且是个整式,没有分母可言.0是其可去间断点.

怎么判断可去间断点和跳跃间断点

可去是左右极限都存在,也相等,但在此点无定义.跳跃是左右极限虽然存在但不相等

下列函数在指出的点处间断说明这些间断点属于哪一类如果是可去间断点则补充或说明函数的定义使它连续

1、y=(x-1)(x+1)/[(x-1)(x-2)],当x=1时,lim[x→1](x-1)(x+1)/[(x-1)(x-2)]=lim[x→1](x+1)/(x-2)=-2,当x=2∫,lim[x

可去间断点处极限存在吗,跳跃间断点处极限存在吗

可去间断点是左右极限都存在且相等,只是与函数在此点的值不等;跳跃简短点是左右极限都存在,但是不相等!不懂请追问希望能帮到你,望采纳!再问:我不是问左右,是问该点的再答:极限存在再问:不对吧,可去间断点