可导和可积的关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:11:17
函数连续不一定可导,但是可导函数一定连续.分段函数就不一定可导.画简单的图形就可以了解了,你画个图:y=|x|,这个函数在x=0时是不可导的.x从负数趋于0时,导数是-1,当x从正数趋于0时,导数是1
可微是指自变量增量\Deltax趋于0时,对应函数的增量\Deltay可以写成A*\Deltax+\Deltax的高阶无穷小,把其中线性的部分称为函数的微分.在一元函数中,可微和可导是等价的.可积是可
这二者没有区别,等价!就是说可导就一定可微,可微也一定可导
我说下直观理解吧.可导在几何图像上面理解,应该是有切线的意思.有切线就是这个曲线在很小的一段局部会很接近直线,局部越小越接近直线,所以要求这个函数曲线不但不能有断开的悬空的点,还要求这个函数曲线平滑,
可导必然连续,连续不一定可导判断连续:设点x0,若x趋于x0时,limf(x)=f(x0),则f(x)在x0连续判断可导:需证左导=右导,由定义lim(f(x)-f(x0))/(x-x0),其中x趋于
连续必定可积,可微未必可积;可导必定连续,连续未必可导;可导和可微是相同概念!
在某点可导,则在这点必然连续.但连续不一定可导,假如这点是两条曲线的交点就不一定可导.同样,如果在某个区间可导,那么在这个区间必然连续.用例子说说单调性问题.例如对于三次函数图像,通常都两个极值点,一
连续与可导的关系有一个好方法可以很容易的明白,就是借助函数图像,举特例.我们都知道,可不可导在几何学中的表现就是在图像上的一点能不能做出切线,而连不连续就是看图像的曲线有没有断点.明白了这个,它们的关
范围内二阶可导,(可导,可微,可积……)都可以推出的!【理由】二阶可导可以推出一阶导数连续,所以,函数必然可导,其余参考下面另外:可微与可导等价可导(可微)可以推出连续,连续可以推出可积!
对单变量的微积分来说,可导=可微;但是对多变量的来说,偏导存在且连续->可微,可微->偏导存在.至于可积与否是要看Riemann和是否存在,还有什么达布上限之类的东西,太多了,懒得打(其实是我自己忘了
一元函数可微和可导是一个概念;可导必连续,连续不一定可导多元函数不必深究吧,这个时候是偏导,不太好说明
在一元的情况下可导=可微->连续->可积可导一定连续,反之不一定二元就不满足了导数:函数在某点的斜率就是函数在这点的导数微分:一元情况下,可微和可导意思一样.求导就是求微分.多元就不一样了积分:积分是
函数在x0点连续的充要条件为f(x0)=lim(x→x0)f(x),即函数在此点函数值存在,并且等于此点的极限值若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导.可导的充要条件是此函数在此
连续函数必可积,但注意一个函数不连续,但它的有限个不连续点为第一类间断点,则它也是可积的.因此说可积函数不一定连续.不知你明白没?
函数在x0点连续的充要条件为f(x0)=lim(x→x0)f(x),即函数在此点函数值存在,并且等于此点的极限值若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导.可导的充要条件是此函数在此
连续不一定可导,可导必连续.可导必可微,可微必可导.
连续不一定可导是显而易见的,但对于一个连续函数,一定至少在某些点处(有限的,无限的)可导么?答案也是否定的.外尔斯特拉丝已然创造出了一个处处连续,处处不可导的函数,他是画不出图象的!
可微与可导等价可导(可微)可以推出连续,连续可以推出可积!
可微时,偏导数一定存在,这是课本上的定理,反过来,偏导数存在时,不一定可微例如,f(x,y)=xy/(x^2+y^2),(x,y)≠(0,0)时0,(x,y)≠(0,0)时f(x,y)在(0,0)点不
①可导与导函数可导是对定义域内的点而言的;处处可导则存在导函数,此外还函数可以在某处可导;只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其他各处均可导.②可积与原函数对于不定积分