2.四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:39:24
对角线AC与BD的位置关系是垂直;理由:∵E、F、G、H分别是AB、BC、CD、DA边上的中点,∴EF∥AC,EF=12AC,FG∥BD,FG=12BD,GH∥AC,GH=12AC,EH∥BD,EH=
证明:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AD=BC,∵在矩形ABCD中,AE、BE、CG、DG分别是各内角的平分线,∴∠ADF=∠FAD=45°,∴△ADF是等腰直角三角形,∴AD
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B
证明:∵E、F、G、H分别为四边中点∴EF‖AC,EF=1/2AC,GH‖AC,GH=1/2AC∴EF‖GH,EF=GH∴四边形EFGH是平行四边形∵AC⊥BD∴EF⊥EH(∵EH‖BD,EF‖AC)
证明:∵E是OA的中点,G是OC的中点,∴OE=AO,OG=CO.∵四边形ABCD是矩形,∴AO=CO,∴OE=OG.同理可证OF=OH.∴四边形EFGH是平行四边形.∵OE=AO,OG=OC,∴EG
连接AC,BD因为E是AB的中点,H是AD的中点所以EH就是△ABD的中位线所以EH∥BD且EH=1/2BD同理在△CBD中,也可以得出FG∥BD且FG=1/2BD所以EH=FG且EH∥FG用同样的方
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=12AC,EF∥AC,GH=12AC,GH∥AC同理,FG=12BD,FG∥BD,EH=
因为AD平行BCAG平分角BADBE平分∠ABC所以∠BAD+∠ABC=180∠BAG=1/2∠BAD∠ABE=1/2∠ABC所以∠ABE+∠BAG=90°所以∠AFB=90°所以∠EFG=90°同理
(1)证明:∵四边形ABCD为矩形,M、N分别是AB、PC的中点,再取PD的中点Q,连接NQ,则有NQ∥12CD,且NQ=12CD.同理可得MA∥12CD,且MA=12CD.∴NQ∥MA,NQ=MA.
联结对角线,根据三角形中位线定理,只要保证对角线互相垂直就可以
证明:∵E,F,G,H分别为AB,BC,CD,DA的中点∴EH是⊿ABD的中位线=>EH=½BD,EH//BDFG是⊿BCD的中位线=>FG=½BD,FG//BD∴EH=FG,EH
…………这个答案应该是C吧你把△ABC先拿出来,其实G是重心楼主学过吗?就是三角形三条中线的交点啊,这里有一个性质,就那你这个图来说,CG是GE的两倍,AG是GF的两倍,还有一条你没画上但是同理,你将
AD//BCAG/AO=EF/OFAO=FOAG=EFAG//EF所以四边形AEFG为平行四边形FOF=90四边形AEFG为菱形AG=GF=EF=AE=XAB=2BE=根号(x2-4)y=x+根号(x
这个本来就是定理.证明:依题意得Rt△AOB≌Rt△AOD≌Rt△COD≌Rt△COB根据勾股定理可得EO=FO=GO=HO∴EG=FH又根据中点四边形定理,四边形EFGH是平行四边形∵EG=FH(对
∵ABCD是矩形,∴BC⊥AB.∵PA⊥平面ABCD,∴BC⊥PA.由BC⊥AB、BC⊥PA、PA∩AB=A,得:BC⊥平面PAB,而AE在平面PAB上,∴AE⊥BC.∵PA=AB、E∈PB且PE=B
∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=12AC=5,同理EF=5,根据矩形的对角线相等,连接BD,得到:EH=FG=5,∴四边形EFGH的周长为20.故答案是:20.
菱形,对角线垂直就行吧……正方形也是菱形的一种吧……教小孩好用功!赞一下!
是矩形,平行四边形,则对角相等.角1=角2.,即邻角相等,则四个角都相等=90度,是矩形
证明:因为四边形ABCD是平行四边形所以,AB//CD所以,角BAD+角ADC=180因为AF平分角BAD,DF平分角ADC所以,角FAD=1/2角BAD,角ADF=1/2角ADC所以,角FAD+角F
设EC=a,由于AECF为菱形,AE=EC=a而BC=4,所以BE=4-a因为三角形ABE是直角三角形所以AB平方+BE平方=AE平方所以2平方+(4-a)平方=a平方;解得a=2.5所以菱形面积=E