同阶方阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:52:48
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
就是构造2n阶的矩阵D(这里用分块矩阵表示)D=|A0||CB|这是一个上三角矩阵,易得|D|=|A||B|(A、B是原来的n阶阵,O代表全零的n阶矩阵,C代表对角线上元素全部是-1,其他元素全部是0
答案为B行列式等于0的矩阵当然不一定是零矩阵,A排除C、D成立的条件正是矩阵A可逆,也就是A的行列式不等于0
|AB|=|A||B|=2*3=6.
A是实方阵吧.证明:记A'=A^T(1)设X1是AX=0的解,则AX1=0所以A'AX1=A'(AX1)=A'0=0所以X1是A'AX=0的解.故Ax=0的解是A'AX=0的解.(2)设X2是A'AX
将二次型的矩阵A表示出来,然后求出他的特征值,再分别求特征向量,将每个特征值的特征向量单位正交化,将特征向量的证交化向量组成的矩阵即是P
矩阵乘法一般不满足交换律,即AC=CA一般不成立.你把C移到A前面来与C^-1消去,用到了交换,这是不对的.
publicclassSquare_9x9{classMyExceptionextendsException{publicMyException(Stringex){super(ex);}}priva
只有两个都是对角矩阵的时候才能交换相乘.
AB=BA可以推出对任何多项式p都有p(A)B=Bp(A)然后构造一个多项式使得p(A)=A^{1/2}即可再问:p(A)=A^{1/2}一定成立吗?怎样判断的啊再答:矩阵函数总可以用多项式代替的,证
可交换的两个矩阵必是同阶数的方阵,这是对的.但同阶数的方阵未必可交换.
|AB|=|A||B|=|B||A|=|BA|得证
对的,都等于a的行列式与b的行列式的乘积再答:如果你认可我的回答,敬请及时采纳,回到你的提问页,点击我的回答,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。如果有其他问题请采纳本题
8行8列的方阵,最外一层有28位同学.查看原帖
当然不是可交换矩阵是一个很强的结论,一般来说都不可交换
AXB=C等式两边左乘A^-1,右乘B^-1得X=A^-1CB^-1(A)正确
证明方法有很多,这里给你介绍一下用初等变换来证明的思路.详见参考资料.
|(AB)^3|=|AB|^3=(|A||B|)^3=(-2)^3=-8再问:设A方阵的行列式为5P为可逆矩形则det(P负一次方AP)等於多少再答:|P^-1AP|=|P^-1||A||P|=|A|