同阶方阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:52:48
同阶方阵
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

矩阵行列式问题求证:对任意两n阶同型方阵A、B有|AB|=|A|·|B|

就是构造2n阶的矩阵D(这里用分块矩阵表示)D=|A0||CB|这是一个上三角矩阵,易得|D|=|A||B|(A、B是原来的n阶阵,O代表全零的n阶矩阵,C代表对角线上元素全部是-1,其他元素全部是0

线性代数n阶方阵问题

答案为B行列式等于0的矩阵当然不一定是零矩阵,A排除C、D成立的条件正是矩阵A可逆,也就是A的行列式不等于0

设A是n阶方阵,证明齐次线性方程组AX=0与(A^T)AX=O是同解方程组.

A是实方阵吧.证明:记A'=A^T(1)设X1是AX=0的解,则AX1=0所以A'AX1=A'(AX1)=A'0=0所以X1是A'AX=0的解.故Ax=0的解是A'AX=0的解.(2)设X2是A'AX

线性代数..对于同阶方阵A和B,有(A+B)^2=?

将二次型的矩阵A表示出来,然后求出他的特征值,再分别求特征向量,将每个特征值的特征向量单位正交化,将特征向量的证交化向量组成的矩阵即是P

A,B,C同阶方阵,C为可逆方阵,C^(-1)AC=B,证明对任意正整数C^(-1)A^mC=B^m.

矩阵乘法一般不满足交换律,即AC=CA一般不成立.你把C移到A前面来与C^-1消去,用到了交换,这是不对的.

编程出以下9*9阶方阵,方阵如下图,

publicclassSquare_9x9{classMyExceptionextendsException{publicMyException(Stringex){super(ex);}}priva

若A是正定矩阵,B是同阶方阵且AB=BA,求证A^1/2B=BA^1/2

AB=BA可以推出对任何多项式p都有p(A)B=Bp(A)然后构造一个多项式使得p(A)=A^{1/2}即可再问:p(A)=A^{1/2}一定成立吗?怎样判断的啊再答:矩阵函数总可以用多项式代替的,证

可交换的两个矩阵必是同阶数的方阵对还是错

可交换的两个矩阵必是同阶数的方阵,这是对的.但同阶数的方阵未必可交换.

设A,B为同阶方阵,证明|AB|=|BA|

|AB|=|A||B|=|B||A|=|BA|得证

设ab是同阶方阵 则ab的行列式=ba 的行列式对吗

对的,都等于a的行列式与b的行列式的乘积再答:如果你认可我的回答,敬请及时采纳,回到你的提问页,点击我的回答,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。如果有其他问题请采纳本题

两个任意的同阶方阵是可交换矩阵吗?

当然不是可交换矩阵是一个很强的结论,一般来说都不可交换

设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )

AXB=C等式两边左乘A^-1,右乘B^-1得X=A^-1CB^-1(A)正确

同阶方阵的乘积的行列式等于它们的行列式的乘积怎么证明

证明方法有很多,这里给你介绍一下用初等变换来证明的思路.详见参考资料.

设det(A)等于负1 det(B)等于2 AB为同阶方阵 则det((AB)三次方)等于多少

|(AB)^3|=|AB|^3=(|A||B|)^3=(-2)^3=-8再问:设A方阵的行列式为5P为可逆矩形则det(P负一次方AP)等於多少再答:|P^-1AP|=|P^-1||A||P|=|A|