同阶方阵A,B,若存在可逆矩阵P,有P^TAP=B,则A,B的关系为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:07:51
同阶方阵A,B,若存在可逆矩阵P,有P^TAP=B,则A,B的关系为
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

证明逆矩阵存在已知 设n阶方阵A,B满足 AB=A+B 证明 A-E 可逆AB- A- B=0B(A-E)=AB=A(A

这不是原题吧由AB-A-B=0得(A-E)B=A[注意左右的差别]则B=(A-E)^-1A但从你题目中推不出A-E可逆若要继续讨论,请给原题再问:已知设n阶方阵A,B满足AB=A+B证明A-E可逆这就

设B是可逆矩阵,A是与B同阶的方阵才,且满足A2+AB+B2=0{A平方B平方},证明A和B都是可逆矩阵.

A^2+AB+B^2=0-A^2-AB=B^2A(-A-B)=B^2因为B可逆,所以:A(-A-B)B^(-1)B^(-1)=B^2B^(-1)B^(-1)=E,E为单位阵.所以A有逆(-A-B)B^

A,B为n阶方阵,且r(A)=r(B).证明:存在可逆矩阵M ,使AMB=O

错.反例:A=B=单位矩阵.当然r(A)=r(B).任何可逆矩阵M:AMB=M≠○.

线性代数问题.已知n阶方阵A,B,A^2+AB+B^2=0,求证A为可逆矩阵的充要条件是B为可逆矩阵

原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A

证明:若n阶方阵A的伴随矩阵A*可逆,则A可逆

【反证法】假设A不可逆,则|A|=0所A·A*=|A|·E=0因A*逆,等式两边右乘A*的逆,得A=A·A*·A*的逆=A·A*·A*的逆=0·A*的逆=0即有A=0进而有A*=0(根据伴随矩阵的意义

设A为可逆n阶方阵,证明存在正交矩阵P,Q使得PAQ为对角矩阵

这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··

设A,B均为n阶方阵,E为单位矩阵,证明:若E-AB可逆,则E-BA也可逆,并求E-BA的逆

(E-AB)A=A-ABA=A(E-BA)=>A=(E-AB)^(-1)A(E-BA)E=E-BA+BA=E-BA+B(E-AB)^(-1)A(E-BA)=(E+B(E-AB)^(-1)A)(E-BA

设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B

知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2

设A,B是n阶方阵 P,Q是n阶可逆矩阵

给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价A的行向量组是(1,0),(0,0)B的行向量组是(0,0),

矩阵A,B都是n阶方阵,若A,B都可逆,则A+B可逆嘛

不一定.反例:A可逆,B=-A可逆,但A+B=0不可逆.

设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵

AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B

线性代数的选择题A ,B为同阶可逆矩阵b)存在可逆矩阵P 使P^-1 AP=B为什么不对?D)存在可逆矩阵P和Q,使得P

存在可逆矩阵P和Q,使得PAQ=B,这其实就是通过初等变换实现的,P表示行变换,Q表示列列变换.存在可逆矩阵P使P^-1AP=B,这说明A与B相似,但不是随便两个矩阵都相似的

设A为n阶方阵,B为n阶可逆阵,若存在正整数k使A^k=O,则矩阵方程AX=XB仅有零解

要多说明一点,你取的k是最小的使得A^k=0的自然数k.等等-由于A^(k-1)不恒为O,所以X=O-好像有问题...我想一下.这句话应该是对的,但是我要证明的话要用到Jordan形式...(就是只有

一个线性代数问题.若两个n阶方阵A,B乘积为可逆矩阵.那么r(AB)=n 吗?

可逆矩阵对应的行列式值一定不为0,要是r(ab)不是n那么行列式ab就等于0了,不可逆,欢迎和我一起讨论.再问:你好,我刚学现代,不太懂,为什么r(AB)不是n,行列式就等于0了啊?再答:行列式的值可

设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )

AXB=C等式两边左乘A^-1,右乘B^-1得X=A^-1CB^-1(A)正确

如果A,B是可逆矩阵,证明n阶方阵A,B的乘积AB也为可逆矩阵.

由(AB)(B^(-1)A^(-1))=A(B·B(-1))A^(-1)=AEA^(-1)=AA^-1=E这说明(AB)^-1=B^(-1)*A^(-1).