向量AC*DB AD*BC=8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:03:28
向量AC*DB AD*BC=8
在△ABC中,若向量AB*向量AC=向量BA*向量BC=1,那么AB=___

.|向量AB+向量AC|=根号(c平方+b平方+2*c*b*cosA)=根号6c*b*cosA=1,c=根号2得b=根号2ABC是等边三角形AB=根号2

在三角形ABC中,若向量AC乘以向量BC=1,向量AB×向量BC=-2,则|向量BC|的值

根据向量减法可知:向量AC-向量AB=向量BC.向量AC×向量BC=1,向量AB×向量BC=-2,两式相减得:向量AC×向量BC-向量AB×向量BC=3,即(向量AC-向量AB)×向量BC=3,向量B

在三角形ABC中,D,F分别是BC,AC的中点,向量AE=三分之二向量AD,向量AB=向量a,向量AC=向量b

向量AD=(向量a+向量b)/2\x0d向量AE=三分之二向量AD=(向量a+向量b)/3\x0d向量AF=向量AC/2=向量b/2\x0d向量BF=向量BA+向量AF=-向量a+向量b/2\x0d向

在三角形abc中,向量ab×向量ac=向量bc×向量ba.证明ac的模=bc的模

过A做ADBC使之成为平行四边形向量AB*向量AC=向量BC*向量BA则向量AB*向量AC-向量BC*向量BA=0向量AB*向量AC+向量AB*向量BC=0向量AB*(向量AC+向量BC)=0向量AB

已知非零向量AB与AC满足(向量AB/丨向量AB丨+向量AC/丨向量AC丨)•BC=0,且

等边三角形向量AB/丨向量AB丨就是AB方向上的单位向量因为(向量AB/丨向量AB丨+向量AC/丨向量AC丨)•BC=0所以ABC的三线合一,ABC为等腰三角形因为向量AB/丨向量AB丨&

已知非零向量AB与AC满足(向量AB/丨向量AB丨+向量AC/丨向量AC丨)?BC=0,且

(1)向量AB/丨向量AB丨和向量AC/丨向量AC丨,分别表示向量AB和向量AC的单位方向向量两者之和与向量BC相成为0说明△ABC为等要三角形(2)又两单位方向向量之积为1/2说明COS<BA

1、已知非零向量AB与AC满足[(向量AB/|向量AB|)+ (向量AC/|向量AC|)·向量BC=0,且(向量AB/|

1、已知非零向量AB与AC满足[(AB/|AB|)+(AC/|AC|)]•BC=0,且(AB/|AB|)•(AC/|AC|)=½,判断三角形ABC的形状.(原题写

已知非零向量AB,AC和BC满足(AB/|AB|+AC/|AC|)BC=0,且AC/|AC|*BC/|BC|=根号2/2

(AB/|AB|+AC/|AC|)BC=0,说明角A的角平分线与BC边垂直,可判断三角形为等腰三角形,又AC/|AC|*BC/|BC|=根号2/2,角C的余弦值为二分之根号2,角C为45度,故三角形为

在△ABC中,若向量AB²=向量AB·向量AC+向量BA·向量BC+向量CA+向量CB,则△ABC是?

向量AB·向量AC+向量BA·向量BC+向量CA·向量CB=向量AB·向量AC+向量AB·向量CB+向量CA·向量CB=向量AB(向量AC+向量CB)+向量CA·向量CB=向量AB^2+向量CA·向量

△ABC中,若向量CB×向量AC+向量AC^2+向量BC×向量AB+向量CA×向量AB=0.则△ABC的形状为?

-->向量AC(向量AC+向量CB)+向量AB(向量BC+向量CA)=0-->向量AC×向量AB+向量AB×向量BA=0-->向量AB(向量AC+向量BA)=0-->向量AB×向量BC=0-->向量A

点C在线段AB上,且向量AC/向量CB=5/2,向量AC=?向量AB ,向量BC=?向量AB

根据题意,向量长度关系为AB:AC:CB=7:5:2考虑向量具有方向性,则向量AC=(5/7)向量AB向量BC=(-2/7)向量AB再问:有解析吗?再答:你画条线段,从左到右分别为点A、C、B,并且A

在△ABC中,已知向量AB*向量AC=向量BA*向量BC

向量两个字我就省略了(1)AB*AC=BA*BC(AC+CB)*AC=(BC+CA)*BC(AC-BC)*AC=(BC-AC)*BCAC²-BC*AC=BC²-AC*BCAC

在三角形ABC中,已知向量AB乘以向量AC=向量BA乘以向量BC.

http://zhidao.baidu.com/question/310964986.html

已知点A、B、C三点共线,且AC向量=8/5(BC向量),若AB向量=λCA向量,求λ

AB向量=AC向量-BC向量AC=8/5BC==>BC=5/8ACAB=AC-5/8AC=3/8AC=-3/8AC所以λ=-3/8

已知正方形ABCD的边长等于1,|向量AB—向量BC+向量AC|=

向量AB—向量BC+向量AC=向量AB+向量CB+向量AC=向量AB+向量AC+向量CB=向量AB+向量AB=2向量AB∴|向量AB—向量BC+向量AC|=|2向量AB|=2