向量右上角t

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:22:03
向量右上角t
已知向量a=(1-t ,1-t ,t),向量b=(2,t,t)则向量b-向量a的模长的最小值是多少?

-a=(1+t,2t-1,0)其模的平方=(1+t)^2+(2t-1)^2=5t^2-2t+2=5(t-1/5)^2+49/25当t=1/5时有最小值(49/25)^(1/2)=7/5

手机右上角小T的小标志是什么意思

T-----TD-SCDMA上网速度尚可H-----HSDPA上网速度最快E-----EDGEGPRS上网速度最慢

已知向量a≠向量e,|向量e|=1 ,对于任意的t∈R,恒有|向量a-t向量e|≥|向量a-向量e|,则

几何方法:有机会可以传图代数方法:|向量a-t向量e|≥|向量a-向量e|,总成立两边平方得:|a|²-2ta●e+t²≥|a|²-2a●e+1,-2ta●e+t

已知向量a=(1-t,1-t,t),向量b=(2,t,t),则|向量b-向量a|的最小值为多少?

-a=(1+t,2t-1,0)|b-a|=√((1+t)^2+(2t-1)^2)=√(5t^2-2t+2)=√(5(t-1/5)^2+9/5)所以最小值就是√(9/5)

矩阵的右上角加上-1,T,H,各代表原矩阵的哪种变化?

分别是求矩阵的逆矩阵的转置矩阵的共轭转置

已知向量a=(1-t ,1-t ,t),向量b=(2,t,t)则向量b-向量a的模长的最小值是多少?根号2,

-a=(2,t,t)-(1-t,1-t,t)=(1+t,2t-1,0)|b-a|=√(1+t)^2+(2t-1)^2|b-a|^2=1+t^2+2t+4t^2+1-4t=5t^2-2t+2=5[t-(

已知向量OA向量ob,为两个不共线向量,且向量ap=t向量ab,其中t是实数

向量op=向量oa+向量ap=向量oa+t向量ab=向量oa+t(向量ob-向量oa)=向量oa+t向量ob-t向量oa=(1-t)向量oa+t向量o

如图,已知向量OA向量OB不共线,向量AP=t向量AB,t属于R

点p的集合{p|向量OP=(1-t)*向量OA+t向量OB,t∈[0,1]}构成什么图形?构成的图形是线段AB所有适合条件向量OP=(1-t)*向量OA+t向量OB,t∈R的点都在直线AB上吗对应的点

数学-矩阵-一个矩阵右上角一个T是什么意思?

表示矩阵转置,也有用A'表示的,比如:1256A=-2079;A'=15-272609行列互换

矩阵右上角有个H,这是什么矩阵呢?(有个T是转置,有个H是什么)

一般来讲A^T表示转置,A^H表示转置共轭,对实矩阵而言是一回事,对复矩阵而言转置共轭比单纯的转置更常用一些,比如酉变换、Hermite型等.

.已知向量a≠向量b,向量e的模=1,对任意t∈R,恒有(向量a-t向量e)的模≥(向量a-向量e)等模,为什么向量e垂

(向量a-向量e)的模是两点距离(向量a-t向量e)的模是点与直线上任一点距离要恒成立,最小值为点到直线距离所以为什么向量e垂直于(向量a-向量e)

请问线性代数中矩阵的右上角加个D是什么意思?我知道T是转置,H是共轭,

我觉得好像应该是微分,预测应该与PID算法有类似,D应该是矩阵的微分吧.D是微分算子的符合.

设a向量 ,b向量不共线,如果a向量,tb向量,1/3(a向量+b向量),终点在同一条直线上,则t=?

a,tb,(a+b)/3终点在同一直线上即:a-tb与a-(a+b)/3共线即:a-tb=k(2a/3-b/3),即:k(2a-b)=3a-3tb即:2k=3,即:k=3/2,故:3t=k,即:t=k

设向量a、b都是非零向量,m=|向量a+t向量b|(t属于R)

(1)m最小值为0,此时t=|向量a|/|向量b|(2)当m=0,向量a+t向量b为零向量,零向量与任意向量垂直.这题如果条件有ab向量不同向的话,答案不同.也许我理解有问题,如果回答不正确请不要介意

已知向量A 向量B是不平行的非零向量 t属于R 则当(向量a+t向量b)的模取最小值时 向量B 与(向量a+t向量b)的

90度.画个草图,把向量b的起点移到向量a的终点,t*b可以看做向量b的终点可以在向量b所在直线上滑动,问题可以看做是向量a的起点到向量b所在直线的距离最短,就是垂直了.

已知向量OA,向量OB为两个不共线的向量,且AP=t向量AB,其中t是实数,求证:向量OP=(1-t)向量OA+t向量O

OA等等都是向量.如图:CP‖OB,DP‖OA, 则OP=OC+OD.OC/OA=BP/BA=PB/AB=(AB-AP)/AB=[(1-t)AB]/AB=1-t. OC=(1-t)

已知OA向量和OB向量是不共线向量,AP向量=t*AB向量,使用OA向量和OB向量表示OP向

向量OP=向量OA+向量AP=向量OA+t向量AB=向量OA+t*(向量OB-向量OA)=(1-t)*向量OA+t*向量OB

设向量a=(cos23,cos67),向量b=(cos68,cos22),向量u=向量a+t向量b(t属于R)

a=(cos23,sin23),b=(cos68,sin68)|a|=|b|=11.a*b=cos23cos68+sin23sin68=sin(23-68)=cod(-45)=cos45=√2/22.