向量组a1...as的秩是r1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:37:42
n维向量组的秩至多为n,向量组a1,a2,...as是线性相关的.
因为a1,a2,a3,a5的秩是4所以a1,a2,a3线性无关,且a5不能由a1,a2,a3线性表示又因为a1,a2,a3,a4的秩是3所以a4可由a1,a2,a3线性表示所以a5-a4不能由a1,a
子向量组的秩不会超过整个向量组的秩,因此max{r1,r2}再问:谢谢我还想问一道题,设向量组a1,a2,a3线性无关,向量β≠0满足(ai,β)=0,i=1,2,3,判断向量组a1,a2,a3,β的
向量组a1,a2,...,as的秩为r.,则向量组中任意r+1个向量都是线性相关的,由极大线性无关组的定义即得a1,a2,...as中任意r个线性无关的向量都构成它的一个极大线性无关组.
就用题目中提出的向量a1,a2..as线性相关的意思是,存在不全为0的k1,k2...ks使得k1*a1+k2*a2+...+ks*as=0其中k1,k2...ks为实数.意思就是你只要找到一组满足条
证明:因为a1,a2.as可由b1,b2...br线性表出所以r(a1,a2.as)=s又因为向量组是s维向量,所以r(b1,b2...br)再问:所以r(b1,b2...br)>=s 这个怎么所以
应该知道这个结论吧:如果b1,b2,...,bt都能够被向量组a1,a2,...,as线性表示,那么向量组b1,b2,...,bt的秩不大于a1,a2,...,as的秩.n维向量中可以找到秩为n的向量
如果还不是很明白的话,建议查看一下极大无关组的相关概念帮助理解一下,望采纳……
如果是同一个空间的话,那么这n维向量肯定可以表示该空间的任何一个向量,因为它们是该空间的基底向量,但是如果研究空间不再是原来空间了,那就不行了.再问:是唯一不对
设k1a1+..ksas+m1b1+..+msbs=0,分别左乘m1b1^T,m2b2^T,.,msbs^T,再相加得(m1b1+...+msbs)^T*(m1b1+...+msbs)=0,故m1b1
强烈抗议!机器人提问并胡乱采纳,这是在干什么!白白耽误大家的时间!
A向量组中任何一个向量都不能由其他向量线性表示D任意两个向量的对应分量不成比例
根据定义和给定的条件,这是很显见呀.首先,这r个线性无关的向量,若再添加任何一个向量,必为线性相关,否则与后一条件“r为该向量组的秩”相矛盾,因此该r个线性无关的向量必为该向量组的一个极大无关组.
下图为普通证法.用反证法,也很简单可以得出结论
选BB包含了A,C秩是向量组里极大线性无关组个数Dr个也行
因为向量组a1,…as的秩为r1所以,a1,…as有r1个线性无关的向量,设为C1,C2……Cr1因为向量组b1,…bt的秩为r2所以,b1,…bs有r2个线性无关的向量,设为D1,D2……Dr2则a
本身就是定理:向量组A可以由向量组B线性表出则R(A)
结论是错的,反例:α1=(1.0),α2=(0,1),α3=(2,0)s=3,r=2.{α1,α3}就不是该向量组的极大无关组.
把向量组先视为矩阵A=[a1,a2,...,as]在其中取m列后得到的矩阵相当于B=AP其中P是sxm的矩阵,每一列都是取自单位阵Is的列,且互不相同则r(A)=r,r(P)=m,利用Sylveste