向量组求秩和最大无关向量组

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:53:54
向量组求秩和最大无关向量组
求下列向量组的秩和一个最大无关组,并把其余向量用最大无关组线性表示出来

┏11222┓┃20-112┃┃130-24┃┗21123┛→﹙行初等变换﹚→┏10-100┓┃01100┃┃00110┃┗00001┛一个最大无关组=﹛α1,α2,α4,α5﹜α3=-α1+α2+α

求向量组的秩和一个极大无关组

(a1,a2,a3,a4,a5)=13213-1101-111102-13120r1+r2,r3+r2,r4-r204222-1101-10211102111r1-2r3,r4-r300000-110

求此向量组的一个最大无关组和向量组的秩,并把其余向量用该最大无关组线性表示.

把每个向量按顺序α1,α2,α3,α4构成矩阵A,对A施以初等行变换.32534-503A=-20-1-3最后经过初等行变换后,变成阶梯型,如,如果变成这样5-32510030102A1=001600

向量组a1a2a3线性无关

(b1,b2,b3)=(a1,a2,a3)KK=101220033因为|K|=12≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3所以b1,b2,b3线性无关.怎么让证线性相关呢?

求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示

3-r2,r2-3r1,r3-3r1,r4-r125311743012300120135r4-r2-r3,r2-2r3,r1-17r3253109010-100120000r1-31r22500400

如果向量组线性无关,证明向量组线性无关.

k1*a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=(k1+k2+..+ks)a1+(k2+k3+...+ks)a2+...+ks*as=0因为a1,a

证明向量组线性无关

可参考:http://zhidao.baidu.com/question/280278707.html

向量组的极大无关组和秩(线性代数)

A=(a1,a2,a3,a4)=[12-13][0101][1101][0202]行初等变换为[12-13][0101][0-11-2][0202]行初等变换为[12-13][0101][001-1]

向量组维数和个数请问向量组中向量组的维数大于向量的个数,向量组一定线性无关吗?

不对.比如:(1,2,3,4),(2,4,6,8),维数大于向量的个数,但线性相关

判断向量组A的线性相关性,并求它的一个最大无关组,再把其余向量用这个最大无关组线性表示.

以上第一步:第三行乘-3加到第二行,第三行乘-2加到第四行.以上第二步:第四行乘-1/4,第一行乘7加到第二行,第一行乘-2加到第三行.以上第三步:第四行乘-1加到第一行.从最后的矩阵可看出A的秩为3

利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示

(a1,a2,a3,a4,a5)=112210215-1203-131104-1r3-2r1,r4-r1112210215-10-2-1-5100-22-2r3+r2,r4*(-1/2)1122102

利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组 线性表示.

112210215-1203-131104-1r3-2r1,r4-r1112210215-10-2-1-5100-22-2r3+r2,r4*(-1/2)112210215-100000001-11r1

线性代数 向量组线性相关和线性无关的问题

假设给出了a1...ar个向量,向量组A=(a1,a2,...ar),要求判断线性相关性(1)那么根绝定义来判断的话就是看方程k1a1+k2a2...+krar=0的解集的数量.加入只有k1=k2=.

基础解系中的向量个数 和 极大无关组里向量个数为什么不一致?

你有点混乱了~首先要明白一点,奇次线性方程组AX=0,基础解系含有向量的个数是n-rank(A),这里n是系数矩阵A列向量的个数,然后你说的那个极大无关组是指A的列向量的极大无关组当然是就是rank(

求如下向量组的一个最大无关组和向量组的秩,并把其余向量用该最大无关组线性表示.

一看就没好好看书,这玩意是线代里最最最最基本的玩意了……4个向量,每个都是4元1次方程,联立成方程组,高斯消元(这是比较初等的解释).4个向量,写在一起成一个矩阵,然后还是高斯消元,但是把变换阵记下来

向量组的秩1.为什么说矩阵的秩等于向量组的秩?怎么给与证明?2.向量组的最大无关组和向量组本身等价。这里的等价指的是什么

1.这不是一个证明.因为矩阵的秩的定义就是行向量的秩.在有些教材中,也把矩阵的秩定义为列向量的秩.所以很多书上都给出了这两个定义的等价性.我可以给你一点直观的启发.(1,1,2,3)和(2,1,1,1

如何判断一个向量组的最大线性无关组

方法有很多~不同的方法对应着不同的习题~一般有:根据秩来判断,还有将矩阵阶梯化处理,也可以通过齐次方程的方式~这些都是常用方法~线代书上对应着相关习题~你要我具体说~你要拿一道题目来~数学这东西要实战

判别向量组a1a2a3a4线性相关性,求它的秩和一个最大无关线性组,并把其余向量用这个最大线性无关组表示.

3-2r1,r4-r1112202150-2-1-500-22r3+r211220215000000-22r1+r4,r4*(-1/2),r2-r4110402060000001-1r2*(1/2),

关于线性代数 向量组的最大线性无关向量

不需要,如果确定是r,2是不需要验证的,可以保证成立

求向量组的秩和一个极大无关组.

(a1,a2,a3,a4)=120320421t5t+4102-1r1-r4,r2-2r4,r3-r402-2400040t3t+5102-1r2*(1/4),r1-4r2,r3-(t+5)r202-