3.如图,AB=AC,BD=DC,试说明:三角形ABD全等三角形ACD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:06:08
3.如图,AB=AC,BD=DC,试说明:三角形ABD全等三角形ACD
如图,已知角A=90度,AC=20,AB=10,延长AB至点D,使AC+AB=CD+BD,求BD长

设BD=x,则CD=AC+AB-BD=20+10-x=30-x,在直角三角形ACD中,由勾股定理,得,AC^2+AD^2=CD^2,20^2+(10+X)^2=(30-x)^2解得:x=5

如图,已知AB=AC,BD⊥AC于点D,求证:∠DBC=12∠BAC.

证明:如图,过点A作AE⊥BC于E,∵AB=AC,∴∠CAE=12∠BAC,又∵BD⊥AC,∴∠CAE+∠C=∠DBE+∠C=90°,∴∠DBC=∠CAE,∴∠DBC=12∠BAC.

如图AC、BD相交于点O,AC=BD,AB=CD.急)

最简便做法证明:连接AD三角形DAB与三角形ADC全等原因AD=ADAC=BDAB=CD{SSS}接着可以推出∠B=∠C

已知,如图△ABC中,D是AB上的一点,且CD=BD求证1.AB>AC 2.AB+AC>DB+DC

证明:(1)⊿ADC中,AD+DC>AC∵DC=BD∴AD+BD>AC∵AD+BD=AB∴AB>AC(2)⊿ACD中,AD+AC>CD∴AD+AC+BD>BD+CD∴AB+AC>BD+CD

如图,AB=AC,BD⊥AC于D,CE⊥AB于E,CE、BD相交于O,则图中全等的直角三角形有(  )

∵AB=AC,BD⊥AC于D,CE⊥AB于E,∴∠ADB=∠AEC=90°,∵∠A为公共角,∴△ADB≌△AEC,(AAS)∴AE=AD,BE=CD,∴△AOE≌△AOD(HL),△BOE≌△COD(

如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=

解题思路:等腰三角形解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p

如图,已知ab=cd,ac=bd,求证:角a=角d

证明:连接BC∵AB=CD/AC=BD,BC=BC∴△ABC≌△DBC(SSS)∴∠A=∠D再问:详细一点再答:拜托!这样还不详细?你想怎么样再问:连接BC什么意思再问:连接BC什么意思再问:连接BC

如图,已知AB=CD,AC=BD,试说明∠A=∠D.

连接bc两三角形全等于是两角相等

如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D、E.求证:BD=CE

证明:AB=AC:∠ABC=∠ACBBD⊥AC:∠BDC=90°CE⊥AB:∠CEB=90°=∠BDCBC是公共边所以:RT△BDC≌RT△CEB(角角边)所以:BD=CE

如图,已知AB⊥BD,AC⊥AB,AB=AC,求证:BD=CD

看不到图啊再问:再问:再问:能不能多帮我做啊?再答:像素太低了,看不清楚啊再问:好吧,我一个拍再问:再答:2题是边边边定理,三条边全部相等再问:额(⊙o⊙)…再问:要证明

如图,已知ab=ac,ce垂直ab于e,bd垂直ac于d,试说明bd=ce

证明:因为AB=AC所以∠ABC=∠ACB在Rt△BEC和Rt△BCD中BC=BC∠EBC=∠DCB所以Rt△BEC≌Rt△BCD(一边一锐角对应相等的两个直角三角形全等)所以BD=CE(全等△对应边

如图,已知AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,请说明BE=CD.

理由:∵AB=AC,∠ADB=∠AEC=90°,∠A=∠A,∴△ABD≌△ACE.∴AD=AE.∵AC=AB,∴AC-AD=AB-AE.∴BE=CD.

如图,已知AB//平面α,AC//BD与α分别交于点C,D,求证AC=BD

证明:联接C,D,因为:AC//BD,所以AB与CD共面,假设AB与CD相交于点P,则:因为CD是平面α上的直线,所以AB与α相交于点P,这与AB//平面α相矛盾.所以:AB//CD.在四边形ACDB

如图 点D、E分别在AB AC上,AB=AC BD=CE.求证:BE=CD

AB=ACBD=CE则AB-BD=AC-CE,AD=AE由AB=AC,AD=AE,∠A=∠A,得△ABE≌△ACD则BE=CD

如图,在圆O中,C,D是直径AB上两点,且AC=BD,MC垂直AB

1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就

如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.

证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.又∵AB=AC,∴△ABD≌△CAE(AA

如图,△ABC中,AD⊥BC于D,若AB+BD=AC+DC,求证AB=AC

由AD垂直于BC得:AB平方-BD平方=AC平方-DC平方,可得(AB+BD)(AB-BD)=(AC+DC)(AC-DC)又已知AB+DC=AC+DB则AB-DB=AC-DC,可得AB+BD=AC+D

如图,已知AB=CD,AC=BD,求证;∠A=∠D.

连接AD.在△BAD和△CDA中,BA=CD,BD=CA,AD为公共边,所以,△BAD≌△CDA,可得:∠B=∠C.则有:∠A=180°-∠B-∠AEB=180°-∠C-∠CED=∠D.

如图,AB⊥BC于点B,AD⊥DC于点D,若CB=CD连接AC,BD.求证:AC⊥BD,且∠AB

在△ABC和△ADC中,∠ABC=∠ADC=90°,AC为共边,CB=CD,所以△ABC=△ADC所以AB=AD,∠BAC=∠DAC,即∠BAO=∠DAO在△ABO和△ADO中,AB=AD,AO为共边