3an=2sn 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:09:10
3an=2sn 3
在数列an中,a1=2 an+1=an+3n则an=

由条件得a1=2,a2=5.且有:a2-a1=3*1,a3-a2=3*2,a4-a3=3*3,...an-a(n-1)=3*(n-1),累加得,an-a1=3*(1+2+3+...+n-1)=3n(n

已知数列{an}a1=3 an+1=(3an+2)/(an+2) bn=(an-2)/(an+1) 求证bn是等比数列

(n+1)=[a(n+1)-2]/[a(n+1)+1]=[(3an+2)/(an+2)-2]/[(3an+2)/(an+2)+1]=[3an+2-2an-4]/[3an+2an+2]=[an-2]/[

已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an

由an+2=3an+1-2an可得an+2-an+1=2(an+1-an)因为a2-a1=2,所以an+1-an不会等于0,则an+1-an是以2为公比的等比数列由上可得an+1-an=2^nan-a

a1=1 an+1=an/2an+3,用两种方法求an

方法1:an+1=an/(2an+3)两边取倒数:1/a(n+1)=2+3/an设bn=1/anb(n+1)=3bn+2b(n+1)+1=3(bn+1)[b(n+1)+1]/(bn+1)=3∴{bn+

在数列an中,a1=2,an+1=an/an+3,求an 麻烦讲得详细点

等式两边倒数,得到1/an+1=1+3/an,再变形,得到:(1/an+1)+1/2=3(1/an+1/2)所以{bn}={1/an+1/2}是一个等比数列,第一项b1=1/a1+1/2=1所以bn=

已知数列an的前n项和sn3+2^n,则an=

解题思路:利用an=Sn-Sn-1来解答。解题过程:最终答案:略

已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列

1.bn=(3an-2)/(an-1)an=(bn-2)/(bn-3)a(n+1)=[b(n+1)-2]/[b(n+1)-3]a(n+1)=(4an-2)/(3an-1)3a(n+1)an-a(n+1

数列{an}满足a1=1,且an=an-1+3n-2,求an

a1=1an=an-1+3n-2an-1=an-2+3(n-1)-2...a2=a1+3*2-2左右分别相加an=a1+3*(n+n-1+...+2)-2*(n-1)an=1+3*(n+2)*(n-1

a1=3,an=2an-1+3 证{an+3}等比,并求an

(1)an=2a+3,∴an+3=2[a+3],∴数列{an+3}是等比数列.(2)an+3=(a1+3)*2^(n-1),an=(a1+3)*2^(n-1)-3=(6)*2^(n-1)-3.再问:2

数列an中,a1=3,an+1=an/2an+1,则an=?

a(n+1)=an/(2an+1)1/a(n+1)=(2an+1)/an=1/an+21/a(n+1)-1/an=2,为定值.1/a1=1/3,数列{1/an}是以1/3为首项,2为公差的等差数列.1

数列an中,a1=1,2an+1-2an=3,则通项an=

提取公因式2的an次方.下面不用多说了吧?再问:继续说撒再答:不是吧。。2的an+1次方等于2的an次方*2,因此提出2的an次方后,变为(2-1)2^an=3,变成2的an次方等于3,an等于log

已知数列an满足 a1=1/2,an+1=3an/an+3求证1/an为等差数列

证明:取倒数1/an+1=an+3/3an=1/3+1/an1/an+1-1/an=1/3a1=1/21/a1=2{1/an}2首项1/3公差等差数列an=3/(5+n)

数列{an},a1=1,an+1=2an-n^2+3n,求{an}.

待定系数法因为a(n+1)=2an-n^2+3n设a(n+1)+p(n+1)^2+q(n+1)=2(an+pn^2+qn)展开整理得a(n+1)=2an+pn^2+(q-2p)-(p+q)与原式一一对

在等差数列an中,a1=2,3an+1-an=0,求an

是等比数列吧?3a(n+1)-an=03a(n+1)=ana(n+1)/an=1/3,等比1/3a1=2an=2/3^(n-1)=6/3^n

An+1=3XAn+2n+1 怎么算出An+1-An=3(An-An-1)+2

设An=3An-1+2n-1.1An+1=3XAn+2n+1.22式-1式

已知数列{an},a1=1,an+1=3an/2an+3,(1)求数列{an}的前五项)(2)数列{an}的通项公式

(1)a(n+1)=3an/(2an+3)a1=1a2=3a1/(2a1+3)=3/5a3=3a2/(2a2+3)=3/7a4=3a3/(2a3+3)=3/9=1/3a5=3a4/(2a4+3)=3/

数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.

(1)bn+1=(an+1-2)/(1-an+1)=(an-2)/(2-2an)bn=(an-2)/(1-an)bn+1/bn=1/2b1=-1/2bn为等比数列(2)(an-2)/(1-an)=-1

数列{an}满足 a1=2,a2=5,an+2=3an+1-2an.(1)求证:数列{an+1-an}是等比数列; (2

(1)证明:由条件得a[n+2]-a[n+1]=2(a[n+1]-a[n])首项为a[2]-a[1]=5-2=3,公比为2,所以{a[n+1]-a[n]}为等比数列由(1)得a[n+1]-a[n]=3

在等差数列{an}中,a1=1,a2=3,an+2=3an+1-2an(n属于N+)证明数列{an+1-an}是等比数列

a(n+2)-an=2(an-a(n-1))a2-a1=3-1=2数列{an+1-an}是首项为2公比为2等比数列