3x sinx -e^x=0,在x=1.5附近的根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:12:04
原式=limsinxcos(1/x)-limsinx/x前一个是无穷小乘有界函数,还是无穷小,后面是重要极限等于1所以原式=0-1=-1
lim(x→0)(1-cosx)/(xsinx)=lim(x→0)(1-(1-2(sinx/2)^2)/(xsinx)=(1-(1-2*x^2*(1/2)^2))/x^2=1/2
x→0时,运用等价无穷小,即1-cosx~x^2/2(1-cosx等价于x^2/2,在乘除中可以直接替换)sinx~x(同理,在乘除中可以直接替换)于是原式=(x^2/2)/(x*x)=1/2
连续使用罗比达法则:原式=lim[e^x(sinx+cosx)-1-2x]/(3x²)=lim(2e^xcosx-2)/6x=lime^x(cosx-sinx)/3=1/3
f(x)=xsinx-3/2f'(x)=sinx+xcosx令f'(x)=0得tanx=-x,解为x0,x0∈(π/2,π)∴(0,x0),f(x)递增,(x0,π),f(x)递减f(x)max=f(
F(x)=e^xsinxF’(x)=e^xsinx+e^xcosx=e^x(sinx+cosx)=e^x√2(√2/2*sinx+√2/2*cosx)=e^x√2(sinπ/4sinx+cosπ/4c
经济数学团队帮你解答,有不清楚请追问.请及时评价.
1.y'=x^2-x+12.y'=e^xsinx+e^xcosx
用泰勒公式展开e^2x,分子等价于x^2,limxsinx/(e^2x-2x-1)=limx^2/[(1+2x+(2x)^2/2+o(x^2))-2x-1]=limx^2/2x^2=1/2
设g(x)=e^xsinx-kx,g(0)=0g’(x)=√2e^xsin(x+45)-k,若使题中不等式成立,只需g’(x)>=0①;而h(x)=e^xsin(x+45)的导函数h’(x)=√2e^
不定积分为(x*sec^2x-tanx)/2,所以0->π的定积分发散
是x的高阶无穷小
你的这种思路完全正确.如果是我也会这样解题.这是不易出错的解法.他给的答案是用到洛必达法则.即0/0时同时对分子和分母求导.其实第二步用变量代换u=1/x会更容易一些.
那就是你的问题了,根号应该加个括号啊ln|y|=ln|√[xsinx√(1-e^x)]|=1/2*ln|xsinx√(1-e^x)|=1/2*[ln|x|+ln|sinx|+1/2*ln|e^x-1|
原式=lim{x->0}e[1-e^(cosx-1)]/(xsinx)=lim{x->0}e[-(cosx-1)]/x^2利用e^u-1~u(u->0),sinx~x(x->0)=e*lim{x->0
lim(x趋向于0)(cosx)^[1/(xsinx)]=lim(x趋向于0)[(1+cosx-1)^(1/(cosx-1))]^[(cosx-1)/(xsinx)]=lim(x趋向于0)e^[(co
你这道题的分母是不是limx->0√(1+xsinx)-cosx啊,是忘了一个中括号吗?先用等价无穷小,x->0时,(e^x-1)等价于x原式=limx->0[√(1+xsinx)-cosx]/x(e
都错lim(x→0)x/(xsinx)=lim(x->0)1/sinx=无穷大lim(x→0)(xsinx)/x=lim(x->0)sinx=0
∫[xsinx/(1+e^x)]dx=∫[xsinx/(1+e^x)]dx+∫[xsinx/(1+e^x)]dx(分成两个积分)=-∫[xsinx/(1+1/e^x)]dx+∫[xsinx/(1+e^
你确定你把题目写得对么?x趋于0的时候,分母xsinx趋于0,而分子e^x-e^-4不为0,那么极限值只能为无穷大