3x sinx -e^x=0,在x=1.5附近的根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:12:04
3x sinx -e^x=0,在x=1.5附近的根
cos1/xsinx-1/xsinx,x趋近0时的极限

原式=limsinxcos(1/x)-limsinx/x前一个是无穷小乘有界函数,还是无穷小,后面是重要极限等于1所以原式=0-1=-1

lim(x→0)(1-cosx)/(xsinx)=?

lim(x→0)(1-cosx)/(xsinx)=lim(x→0)(1-(1-2(sinx/2)^2)/(xsinx)=(1-(1-2*x^2*(1/2)^2))/x^2=1/2

lim x→0 1-cosx/xsinx

x→0时,运用等价无穷小,即1-cosx~x^2/2(1-cosx等价于x^2/2,在乘除中可以直接替换)sinx~x(同理,在乘除中可以直接替换)于是原式=(x^2/2)/(x*x)=1/2

求极限lim[e^xsinx-x(1+x)]/x^3 其中X趋向于0

连续使用罗比达法则:原式=lim[e^x(sinx+cosx)-1-2x]/(3x²)=lim(2e^xcosx-2)/6x=lime^x(cosx-sinx)/3=1/3

请问:判断函数f(x)=xsinx-3/2在(0,π)内的零点个数,并加以证明.

f(x)=xsinx-3/2f'(x)=sinx+xcosx令f'(x)=0得tanx=-x,解为x0,x0∈(π/2,π)∴(0,x0),f(x)递增,(x0,π),f(x)递减f(x)max=f(

函数f(x)=e^xsinx在(-π,π)的单调递减区间

F(x)=e^xsinxF’(x)=e^xsinx+e^xcosx=e^x(sinx+cosx)=e^x√2(√2/2*sinx+√2/2*cosx)=e^x√2(sinπ/4sinx+cosπ/4c

不定积分e^xf(2x)dx=e^xsinx+c,则f(x)=

经济数学团队帮你解答,有不清楚请追问.请及时评价.

求导数*(数学)1.y=x^3/6-x^2/2+x2.y=e^xsinx

1.y'=x^2-x+12.y'=e^xsinx+e^xcosx

求极限limx趋于0时 xsinx/(e^2x-2x-1)

用泰勒公式展开e^2x,分子等价于x^2,limxsinx/(e^2x-2x-1)=limx^2/[(1+2x+(2x)^2/2+o(x^2))-2x-1]=limx^2/2x^2=1/2

已知函数f (x)=e^xsinx,对任意的x∈[0,π/2],都有f(x)>=kx成立,求k的取值范围

设g(x)=e^xsinx-kx,g(0)=0g’(x)=√2e^xsin(x+45)-k,若使题中不等式成立,只需g’(x)>=0①;而h(x)=e^xsin(x+45)的导函数h’(x)=√2e^

定积分x:0->π ∫(xsinx)/(cosx)^3 dx

不定积分为(x*sec^2x-tanx)/2,所以0->π的定积分发散

计算lim xsinx (e^1/x -1) x->∞

你的这种思路完全正确.如果是我也会这样解题.这是不易出错的解法.他给的答案是用到洛必达法则.即0/0时同时对分子和分母求导.其实第二步用变量代换u=1/x会更容易一些.

求 √xsinx(√1-e^x)的导数?

那就是你的问题了,根号应该加个括号啊ln|y|=ln|√[xsinx√(1-e^x)]|=1/2*ln|xsinx√(1-e^x)|=1/2*[ln|x|+ln|sinx|+1/2*ln|e^x-1|

lim e-e^cosx除以xsinx x趋向0

原式=lim{x->0}e[1-e^(cosx-1)]/(xsinx)=lim{x->0}e[-(cosx-1)]/x^2利用e^u-1~u(u->0),sinx~x(x->0)=e*lim{x->0

lim(x趋向于0)(cosx)^[1/(xsinx)]=

lim(x趋向于0)(cosx)^[1/(xsinx)]=lim(x趋向于0)[(1+cosx-1)^(1/(cosx-1))]^[(cosx-1)/(xsinx)]=lim(x趋向于0)e^[(co

问 lim x->0 √(1+xsinx)-cos/x(e^x-1) 帮我写写过程和用到的定理,

你这道题的分母是不是limx->0√(1+xsinx)-cosx啊,是忘了一个中括号吗?先用等价无穷小,x->0时,(e^x-1)等价于x原式=limx->0[√(1+xsinx)-cosx]/x(e

lim(x→0)x/(xsinx)=0和lim(x→0)(xsinx)/x=1

都错lim(x→0)x/(xsinx)=lim(x->0)1/sinx=无穷大lim(x→0)(xsinx)/x=lim(x->0)sinx=0

xsinx/(1 + e^x)在[-π/2,π/2]上的定积分

∫[xsinx/(1+e^x)]dx=∫[xsinx/(1+e^x)]dx+∫[xsinx/(1+e^x)]dx(分成两个积分)=-∫[xsinx/(1+1/e^x)]dx+∫[xsinx/(1+e^

x-0 lim(e^x-e^-4)/xsinx

你确定你把题目写得对么?x趋于0的时候,分母xsinx趋于0,而分子e^x-e^-4不为0,那么极限值只能为无穷大