3阶可逆矩阵A的三个特征值之积等于6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:08:23
设特征值为入,特征向量为a,即(入I-A)a=0;如果入=0;则|A|=0;A不可逆
95-4-0.25这里应该是A^-1x=-0.25x
|A|=2≠0可逆
A的三个特征值分别为1,2,3,那么2A的特征值为2,4,6,(2A)^-1的特征值为1/2,1/4,1/6再问:你确定吗?可是答案写1,不是1/2再答:确定,答案错了再问:哦,那再问你个问题,A=[
有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值
知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点
设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.
A的特征值为1,2,-2那么A^(-1)的特征值为1,1/2,-1/2|A|=1*2*(-2)=-4A*=|A|A^(-1),那么A*的特征值为-4*1,-4*(1/2),-4*(-1/2)A11+A
(A)=2==>0是A的特征值E-3A不可逆=>1/3是A的特征值|E+A|=0==>-1是A的特征值
若要A+aE可逆,只需|A+aE|≠0,即a不是-A的特征值,亦即-a不是A的特征值.因此a≠-1,-2,3即可.观察选项,只有A+E可逆,选B.
∵A为n阶可逆矩阵,λ是A的特征值,∴A的行列式值不为0,且Ax=λx⇒A*(Ax)=A*(λx)⇒|A|x=λ(A*x)⇒A*x=.A.λX,故选:B.
A*=|A|乘上A的逆阵,它的秩为|A|乘上(矩阵A的秩的倒数),由A+3E不可逆可知|A+3E|=0即A的一个特征值为-3,因此矩阵A*的特征值为-5/3.
因为AT×(1,1,1)T=4(1,1,1)T,所以,A的转置AT有一个特征值4所以,|AT-4I|=0转置一下,得|A-4I|=0所以,A有一个特征值4
123求|A||A|=1*2*3=6
A不可逆时,0一定是特征值.经济数学团队帮你解答.请及时评价.再问:还想问一下再问:关于这个题再问:再答:
先告诉你一个定理吧:若x是A的特征值,则f(x)是f(A)的特征值.(其中f(x)是x的多项式,f(A)矩阵A的多项式)那么你的问题答案就显而易见了,f(x)=x+x^2;所以B的特征值为飞f(1)、
E+A的特征值为2,2,-4故(E+A)^(-1)的特征值为1/2,1/2,-1/4
题目不是很清楚!特征值与其逆矩阵的特征值是相反数的关系,相对应的相乘等于1相似矩阵特征值相等,B与A的特征值一样,那么B逆就为234E的特征值为1,那么B逆-E就为2-13-14-1,为123
由已知,|A|=6所以|A^-1|=|A|^-1=1/6
因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值