3阶对称矩阵对于 的基与维数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:46:26
A正定二次型X^TAX的正惯性指数为nA与E合同
对矩阵没有要求.化阶梯形是为了找最高阶非零子式
1.对A做谱分解,利用2-范数的酉不变性,可以不妨设A是对角阵2.利用齐次性,把A乘上一个正实数后结论不变,所以可不妨设A的最大特征值和最小特征值的乘积是1接下来就好办了,记A的特征值为d_1>=d_
表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的
设A是m行n列矩阵[不必是方阵,更不必是对称矩阵],A的第i行、第j列交点元素aij则A′[即A的转置矩阵]的第k行为﹙a1k,a2k……amk﹚A的第k列为﹙a1k,a2k……amk﹚′∴A′A的第
实对称阵A是正定阵则A的特征值{a1,a2,..,an}都是正的而实对称阵是正交相似于对角阵diag(a1,..,an)即有正交阵P使得A=P'diag(a1,a2,..,an)P=P'diag(√a
3.对于对称方阵A(不一定正定)来说,它一定能有n个非负特征值吗?显然不能.比如-E,没有听说过负定矩阵吗?
记E(ij)是第i行第j列元素为1,其余元素是0的矩阵,则E(ij)+E(ji),1
经济数学团队为你解答,有不清楚请追问.请及时评价.
关于这个我建议你应该仔细看一下矩阵秩的定义,对于3阶实对称矩阵来说,矩阵秩表示它至少有一个2阶子矩阵的行列式为0,而3阶子矩阵即矩阵本身的行列式为0再问:一下子忽略了定义。
这个就按照合同的定义和脱衣原则就可以证明.A=P'diagP,其中diag是对角阵,P是可逆矩阵,这是合同的定义.那么A'=(P'diagP)'=P'diagP,第二个等号就是脱衣原则.就是去括号后从
证明:因为A,B均为n阶的对称矩阵,所以A'=A,B'=BAB为对称矩阵(AB)'=ABB'A'=ABBA=AB即A与B可交换
由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!
3阶与2阶不能加.所以得是同阶.n阶实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法构成R上的线性空间,(验证简单,自己完成).维数是1+2+……+n=n(n+1)/2.基可以用{Eij}1≤i≤j
设矩阵A是m行、n列的那么A就是m行、n列的矩阵,假定:m>=n,那么矩阵A的秩:r(A)
是的因为(AA^T)^T=(A^T)^TA^T=AA^T所以AA^T是对称矩阵再问:太感谢了,再问一个A是一个4*2的矩阵,B是一个3*4的,求AB。题是不是出错了再答:错了AB无意义BA可以相乘再问
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
必要性:(1)AB是对称矩阵=>(AB)'=AB(2)又(AB)'=B'A',且A,B为对称矩阵=>A'=A,B'=B故(AB)'=B'A'=BA由(1)(2)知AB=BA充分性:AB=BA,而A,B