四边形abcd为正方形,点e在边bc上,点f在对角线ac上且ef垂直于ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:50:14
为你提供精确解答、1、因为P点在平面ABCD内的射影为A所以PA垂直于面ABCD连结AC,BD,交点为O连结EO因为E,O分别为PD,BD中点所以EO平行且等于1/2PB又EO在面AEC内所以PB平行
以A为原点,建立直角坐标系,B(6,0),C(6,6),D(0,6),E(0,3),F(6,4)AF方程:y=2x/3,EC方程:y=2x-6,P为二直线交点,x=9/2,y=3,P点坐标(9/2,3
(1)由等腰△APD三线合一知AG⊥PD,且PD⊂面PCD,故AG⊥面PCD;(2)又面PEC⊥面PDC,且AG⊄面PEC,故AG//面PEC;(3)先证明点E是AB的中点(不
连接FB∵四边形EFGB为正方形∴∠FBA=∠BAC=45°,∴FB∥AC∴△ABC与△AFC是同底等高的三角形∵2S△ABC=S正ABCD,S正ABCD=2×2=4∴S=2故选A.
连接FB∵四边形EFGB为正方形∴∠FBA=∠BAC∴FB∥AC∴△ABC与△AFC是同底等高的三角形∵2S△ABC=S正ABCD,S正ABCD=4×4=16∴S=4故选A.
1、延长BG交DE于M∵四边形ABCD和CEFG是正方形,∴∠BCD=∠DCE=90°BC=CDCE=CG∴△BCG≌△CDE∴∠GBC=∠CDE∵∠BGC=∠DGM(对顶角)∴△BCG∽△DGM∴∠
∵正方形ABCD的面积为9,∴AB=3,∵△ABE是等边三角形,∴AB=BE=3,∵四边形ABCD是正方形,∴点B即为点D关于AC的对称点,∴BE即为PD+PE的最小值,∴PD+PE的最小值为:3
连BD.(1)由△BEF是等腰直角三角形,∴∠FBE=45°,BE=√2BF,由△DAB是等腰直角三角形,∴∠ABD=45°,BD=√AB,∴AB:BF=BD:BE.①(2)由∠ABF=∠DBE,由①
/>在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a
2梯形GBAF的面积=(FG+AB)乘以BG除以2=(FG+AB)乘以FG除以2=(BG+BC)乘以FG除以2=CG乘以FG除以2=△CGF的面积所以△AFC的面积=△ABC的面积=2乘以2除以2=2
对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=
根号(a^2+b^2)再问:^是什么意思再答:平方
∵正方形ABCD和正方形EFGB,∴AB=BC=CD=AD,EF=FG=GB=BE,∵正方形ABCD的边长为2,∴S△AFC=S梯形ABGF+S△ABC-S△CGF=12×(FG+AB)×BG+12×
【解】延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥A
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
如图示,正方形CEKH的面积等于正方形ABCD与BEFG的面积和:
显而易见矩形ABCD四个角都是直角,BE平分∠ABC,得到两个角都是45°所以三角形ABE就是等腰直角三角形,所以AE=AB然后EF⊥BC,ABFE四个角又都是直角,而且邻边相等所以是正方形得证
连接BF∵ABCD是正方形∴∠ACB=45°∵BEFG是正方形∴∠FBG=45°∴∠ACB=∠EBG∴BF∥AC(同位角相等,两直线平行)∴△AFC和△ABC的高相等,(平行线间的距离相等)∵△AFC
因为E是AB的中点,AD=2所以AE=1所以ED=根号(4-1)=根号5所以EH=根号5所以AH=根号5-1又因为AFGH是正方形所以AF=AH=根号5所以AF/AD=根号5-1/2所以F是AD的黄金
如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A